Patents Assigned to Micrel, Inc.
  • Patent number: 8872556
    Abstract: A phase-locked loop circuit using a multi-curve voltage-controlled oscillator (VCO) having a set of operating curves, each operating curve corresponding to a different frequency range over a control voltage range. The phase-locked loop circuit includes a phase and frequency detector driving a charge pump and a digital control circuit configured to generate a curve select signal using a closed loop curve search operation to select one of the operating curves in the multi-curve VCO, the selected operating curve being used by the VCO to generate an output signal with an output frequency being equal or close to a target frequency of the phase-locked loop. In one embodiment, the digital control circuit increases the charge pump current above a nominal current value during the closed loop curve search operation and set the charge pump current to the nominal current value after an operating curve is selected.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: October 28, 2014
    Assignee: Micrel, Inc.
    Inventors: Juinn-Yan Chen, Wei-Kang Cheng
  • Patent number: 8861584
    Abstract: A noise discriminator circuit and a noise discrimination method in a burst mode receiver is configured to determine the validity of an incoming burst signal by analyzing the timing of the signal edges of incoming signal to look for a time duration conforming to the preamble data bits of a valid burst signal. In one embodiment, the noise discriminator circuit and method analyze the time duration between signal edges of the same pulse of an incoming signal. In another embodiment, the noise discriminator circuit and method analyze the time duration between a first set of pulses of an incoming signal and the time duration between signal edges of a second set of pulses of the incoming signal. When the time durations are within a given time range relating to a predetermined timing separation of a valid burst signal, the incoming signal is validated as a valid burst signal.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: October 14, 2014
    Assignee: Micrel, Inc.
    Inventors: George W. Brown, Thomas S. Wong, Bernd Neumann
  • Publication number: 20140286649
    Abstract: A signal level detect circuit configured to assess an input signal with varying amplitude signal levels and to generate an indicator signal includes an input circuit configured to receive the input signal and to process the input signal, the input circuit including a first node on which the input signal is sampled; a comparator configured to compare the processed input signal to a signal level threshold and generate a comparator output signal; and an active discharge circuit configured to provide a first discharge current to the first node in response to the comparator output signal. The comparator output signal changes from a low output state to a high output state in response to the comparator input signal, and the active discharge circuit generates the first discharge current to discharge the sampled input signal on the first node after the comparator output signal changes to the high output state.
    Type: Application
    Filed: November 4, 2013
    Publication date: September 25, 2014
    Applicant: Micrel, Inc.
    Inventors: Ulrich Bruedigam, Tomislav Kapucija
  • Patent number: 8774016
    Abstract: A network device includes a physical layer transceiver configured to receive incoming data on a data link at an input clock rate and to store the incoming data in a buffer. The physical layer transceiver includes a Media Independent Interface (MII) controller configured to receive the incoming data stored in the buffer and to transmit the incoming data over a MII bus based on a MII clock where the MII clock is a spread spectrum clock. The network device further includes a Media Access Control (MAC) device configured to receiving incoming data from the physical layer transceiver over the MII bus where the incoming data is clocked by the spread spectrum MII clock.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: July 8, 2014
    Assignee: Micrel, Inc.
    Inventors: Litai Lu, Sheng Lin, Yuwen Hsia, Menping Chang
  • Patent number: 8773084
    Abstract: A DC-to-DC, buck-boost voltage converter includes a duty cycle controller configured to generate control signals for a buck driver configured to drive first and second buck switching transistors at a buck duty cycle and to generate control signals for a boost driver configured to drive first and second boost switching transistors at a boost duty cycle. The duty cycle controller includes at least a duty cycle timer and an offset timer where the duty cycle controller applies the duty cycle timer and the offset timer to control transitions between the buck, the buck-boost and the boost operation modes of the voltage converter.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: July 8, 2014
    Assignee: Micrel, Inc.
    Inventors: Charles A. Casey, David Dearn
  • Patent number: 8760131
    Abstract: A voltage regulator includes a power device formed by an NMOS transistor having a drain terminal coupled to an input voltage, a source terminal providing an output voltage and a gate terminal receiving a gate drive signal; and an integrated AC/DC control loop configured to access the output voltage and to generate the gate drive signal based on a value of the output voltage in relation to a first reference voltage and a second reference voltage. The AC control portion generates a gate drive control signal which is AC coupled to the gate terminal of the power device as an AC component of the gate drive signal. The DC control portion controls a DC voltage level of the gate drive signal. The AC control portion is powered by the input voltage while the DC control portion is powered by a high supply voltage greater than the input voltage.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: June 24, 2014
    Assignee: Micrel, Inc.
    Inventors: Rudolf Gerardus van Ettinger, Paul Wilson
  • Publication number: 20140153598
    Abstract: A laser driver circuit having a differential circuit and an output circuit includes a control circuit receiving a regulated supply voltage that also supplies the differential circuit as an input signal. The control circuit generates a feedback voltage across a first resistor to cause a first current to flow in the first resistor having a current value equal or proportional to the modulation current value. The laser driver circuit includes an operational amplifier receiving the feedback voltage and a reference voltage indicative of a desired modulation current value and to generate the regulated supply voltage. The control circuit and the operational amplifier form a feedback control loop to adjust the regulated supply voltage to regulate the feedback voltage to be equal to the reference voltage, thereby regulating the modulation current value to the desired modulation current value.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 5, 2014
    Applicant: MICREL, INC.
    Inventors: Bernd Neumann, Dieter Kuehnel, Maik Pohland
  • Patent number: 8742829
    Abstract: The present invention is a method and circuitry for driving a high-threshold MOS device on low input voltages. The invention includes a circuit that operates on a supply voltage that is less than the threshold voltage of the high-threshold MOS device. The circuit includes one or more low threshold MOS inverters and one or more capacitors that operate at low input voltages. The one or more low threshold MOS inverters operate in a manner that the one or more capacitors get charged to a voltage greater than the low input voltage. Thereafter, the charged capacitor drives the high threshold MOS device.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: June 3, 2014
    Assignee: Micrel, Inc.
    Inventor: Michael Joseph Mottola
  • Publication number: 20140132232
    Abstract: A buck switching regulator includes a feedback control circuit including a first gain circuit generating a first feedback signal indicative of the regulated output voltage; a ripple generation circuit generating a ripple signal that is injected to the first feedback signal; and a comparator receiving a first reference signal and the first feedback signal to generate a comparator output signal. The switching regulator further includes an offset compensation circuit including a second gain circuit generating a second feedback signal indicative of the regulated output voltage; and an operational transconductance amplifier (OTA) configured to receive the second feedback signal and the first reference signal and to generate an output signal. The output signal of the OTA is coupled to the comparator to adjust an offset to the comparator so as to cancel the offset at the regulated output voltage due to the injected ripple signal.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Applicant: MICREL, INC.
    Inventors: William MacLean, Dashun Xue, Leland Swanson
  • Patent number: 8705608
    Abstract: A noise discriminator circuit and a noise discrimination method in a burst mode receiver is configured to determine the validity of an incoming burst signal by analyzing the timing of the signal edges of incoming signal to look for a time duration conforming to the preamble data bits of a valid burst signal. In one embodiment, the noise discriminator circuit and method analyze the time duration between signal edges of the same pulse of an incoming signal. In another embodiment, the noise discriminator circuit and method analyze the time duration between a first set of pulses of an incoming signal and the time duration between signal edges of a second set of pulses of the incoming signal. When the time durations are within a given time range relating to a predetermined timing separation of a valid burst signal, the incoming signal is validated as a valid burst signal.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: April 22, 2014
    Assignee: Micrel, Inc.
    Inventors: George W. Brown, Thomas S. Wong, Bernd Neumann
  • Publication number: 20140070783
    Abstract: A constant voltage supply uses a constant current boost switching controller to generate an output voltage having a substantially constant voltage magnitude. The constant voltage supply thus constructed realizes fast transient response with small output capacitance.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 13, 2014
    Applicant: Micrel, Inc.
    Inventor: Vincent Stueve
  • Patent number: 8662886
    Abstract: The present invention relates generally to semiconductor wafer fabrication and more particularly but not exclusively to advanced process control methodologies for controlling oxide formation using pressure. The present invention, in one or more implementations, includes a pressure stabilization system to dynamically adjust scavenger pressure in a furnace during wafer fabrication in relation to a pressure formation range, value, or one or more pressure indicators in a wafer fabrication process.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: March 4, 2014
    Assignee: Micrel, Inc.
    Inventor: Miles Dudman
  • Patent number: 8643144
    Abstract: A current sense resistor integrated with an integrated circuit die housed in a chip-scale semiconductor package includes a metal layer formed over a passivation layer of the integrated circuit die where the metal layer having an array of metal pillars extending therefrom. The metal pillars are to be electrically connected to a first conductive electrode and a second conductive electrode external to the chip-scale semiconductor package where the first conductive electrode and the second conductive electrode are physically separated from each other by a separation of a first distance. The current sense resistor is formed in a portion of the metal layer spanning the separation between the first and second conductive electrodes. In some embodiments, a semiconductor device including an integrated circuit die housed in a chip-scale semiconductor package includes a current sense resistor formed in a metal layer formed over a passivation layer of the integrated circuit die.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: February 4, 2014
    Assignee: Micrel, Inc.
    Inventor: Cameron Jackson
  • Patent number: 8643415
    Abstract: A filter circuit in a phase-locked loop circuit includes a capacitor coupled between a control voltage node and a first node; and a variable resistive element coupled between the first node and a ground potential. The variable resistive element has a resistance value modulated by a current proportional to the charge pump current of the charge pump. In one embodiment, the variable resistive element is a MOS transistor biased in the linear region and having a drain-to-source resistance modulated by the current proportional to the charge pump current.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: February 4, 2014
    Assignee: Micrel, Inc.
    Inventor: Dashun Xue
  • Patent number: 8633734
    Abstract: A bi-directional comparator compares two input signals and applies a hysteresis level to the smaller input signal only after the output signal switches logical states and when the two input signals are within a predetermined range of each other. In one embodiment, the hysteresis applied to the smaller input signal is removed when the two input signals are no longer within the predetermined range of each other.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: January 21, 2014
    Assignee: Micrel, Inc.
    Inventors: Charles A. Casey, Richard Zhu, Cameron Jackson
  • Publication number: 20130334662
    Abstract: A current sense resistor integrated with an integrated circuit die where the integrated circuit die is housed in a flip-chip semiconductor package includes a metal layer formed over a passivation layer of the integrated circuit die where the metal layer having an array of metal pillars extending therefrom. The metal pillars are electrically connected to a first leadframe portion and a second leadframe portion of the semiconductor package where the first leadframe portion and the second leadframe portion are electrically isolated from each other and physically separated by a separation of a first distance. The current sense resistor is formed in a portion of the metal layer spanning the separation between the first and second leadframe portions, the first and second leadframe portions forming terminals of the current sense resistor.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: Micrel, Inc.
    Inventor: Cameron Jackson
  • Publication number: 20130335119
    Abstract: A bi-directional comparator compares two input signals and applies a hysteresis level to the smaller input signal only after the output signal switches logical states and when the two input signals are within a predetermined range of each other. In one embodiment, the hysteresis applied to the smaller input signal is removed when the two input signals are no longer within the predetermined range of each other.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Applicant: MICREL, INC.
    Inventors: Charles Casey, Richard Zhu, Cameron Jackson
  • Publication number: 20130334663
    Abstract: A current sense resistor integrated with an integrated circuit die housed in a chip-scale semiconductor package includes a metal layer formed over a passivation layer of the integrated circuit die where the metal layer having an array of metal pillars extending therefrom. The metal pillars are to be electrically connected to a first conductive electrode and a second conductive electrode external to the chip-scale semiconductor package where the first conductive electrode and the second conductive electrode are physically separated from each other by a separation of a first distance. The current sense resistor is formed in a portion of the metal layer spanning the separation between the first and second conductive electrodes. In some embodiments, a semiconductor device including an integrated circuit die housed in a chip-scale semiconductor package includes a current sense resistor formed in a metal layer formed over a passivation layer of the integrated circuit die.
    Type: Application
    Filed: July 25, 2013
    Publication date: December 19, 2013
    Applicant: Micrel, Inc.
    Inventor: Cameron Jackson
  • Patent number: 8609490
    Abstract: A method to form a LDMOS transistor includes forming a gate/source/body opening and a drain opening in a field oxide on a substrate structure, forming a gate oxide in the gate/source/body opening, and forming a polysilicon layer over the substrate structure. The polysilicon layer is anisotropically etched to form polysilicon spacer gates separated by a space in the gate/source/body opening and a polysilicon drain contact in the drain opening. A body region is formed self-aligned about outer edges of the polysilicon spacer gates, a source region is formed self-aligned about inner edges of the polysilicon spacer gates, and a drain region is formed under the polysilicon drain contact and self-aligned with respect to the polysilicon spacer gates. A drift region forms in the substrate structure between the body region and the drain region, and a channel region forms in the body region between the source region and the drift region.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: December 17, 2013
    Assignee: Micrel, Inc.
    Inventor: David R. Zinn
  • Publication number: 20130316508
    Abstract: The present invention provides a laterally diffused metal oxide semiconductor (LDMOS) transistor and a method for fabricating it. The LDMOS transistor includes an n-type epitaxial layer formed on a p-type substrate, and an asymmetric conductive spacer which acts as its gate. The LDMOS transistor also includes a source and a drain region on either side of the asymmetric conductive spacer, and a channel region formed by ion-implantation on the asymmetric conductive spacer. The height of the asymmetric conductive spacer increases from the source region to the drain region. The channel region is essentially completely under the asymmetric conductive spacer and has smaller length than that of the channel region of the prior art LDMOS transistors. The LDMOS transistor of the present invention also includes a field oxide layer surrounding the active region of the transistor, and a thin dielectric layer isolating the asymmetric conductive spacer from the n-type epitaxial layer.
    Type: Application
    Filed: July 30, 2013
    Publication date: November 28, 2013
    Applicant: Micrel, Inc.
    Inventors: Martin Alter, Paul McKay Moore