Patents Assigned to Molecular Imprints, Inc.
  • Patent number: 10747108
    Abstract: An imprint lithography method of configuring an optical layer includes depositing a set of droplets atop a side of a substrate in a manner such that the set of droplets do not contact a functional pattern formed on the substrate. The imprint lithography method further includes curing the set of droplets to form a spacer layer associated with the side of the substrate and of a height selected such that the spacer layer can support a surface adjacent the substrate and spanning the set of droplets at a position spaced apart from the functional pattern.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: August 18, 2020
    Assignee: Molecular Imprints, Inc.
    Inventors: Vikramjit Singh, Michael N. Miller, Frank Y. Xu, Christopher Fleckenstein
  • Patent number: 10747107
    Abstract: An imprint lithography method of configuring an optical layer includes imprinting first features of a first order of magnitude in size on a side of a substrate with a patterning template, while imprinting second features of a second order of magnitude in size on the side of the substrate with the patterning template, the second features being sized and arranged to define a gap between the substrate and an adjacent surface.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: August 18, 2020
    Assignee: Molecular Imprints, Inc.
    Inventors: Vikramjit Singh, Michael Nevin Miller, Frank Y. Xu
  • Patent number: 10718054
    Abstract: Methods and systems are provided for fabricating polymer-based imprint lithography templates having thin metallic or oxide coated patterning surfaces. Such templates show enhanced fluid spreading and filling (even in absence of purging gases), good release properties, and longevity of use. Methods and systems for fabricating oxide coated versions, in particular, can be performed under atmospheric pressure conditions, allowing for lower cost processing and enhanced throughput.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: July 21, 2020
    Assignee: Molecular Imprints, Inc.
    Inventors: Se-Hyun Ahn, Byung-Jin Choi, Frank Y. Xu
  • Patent number: 10585350
    Abstract: Micro- and nano-patterns in imprint layers formed on a substrate and lithographic methods for forming such layers. The layers include a plurality of structures, and a residual layer having a residual layer thickness (RLT) that extends from the surface of the substrate to a base of the structures, where the RLT varies across the surface of the substrate according to a predefined pattern.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: March 10, 2020
    Assignee: Molecular Imprints, Inc.
    Inventors: Vikramjit Singh, Kang Luo, Michael Nevin Miller, Shuqiang Yang, Frank Y. Xu
  • Patent number: 10475685
    Abstract: Methods, systems, and apparatus for a substrate transfer method, including positioning a tray handler device in a first position with i) cutouts of an aperture of the first tray in superimposition with respective pedestals of a pedestal platform and ii) a distal end of the pedestals extending away from a top surface of the first tray; increasing a distance between the top surface of the first tray and a top surface of the pedestal platform to transfer a first substrate from the pedestals to the tabs defined by the aperture of the first tray, while concurrently engaging the second tray handler with the second tray; and increasing a distance between the top surface of the second tray and the bottom surface of a chuck to transfer a second substrate from the chuck to the tabs defined by the second tray.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: November 12, 2019
    Assignee: Molecular Imprints, Inc.
    Inventors: Roy Matthew Patterson, Yaseer A. Ahamed
  • Patent number: 10473936
    Abstract: A method of generating a virtual image, including directing a light beam to a first side of an eyepiece, including transmitting the light beam into a first waveguide of the eyepiece; deflecting, by first diffractive elements of the first waveguide, a first portion of the light beam towards a second waveguide of the eyepiece, the first portion of the light beam associated with a first phase of light; deflecting, by protrusions on the first side of the eyepiece, a second portion of the light beam towards the second waveguide, the second portion of the light beam associated with a second phase of light differing from the first phase; and deflecting, by second diffractive elements of the second waveguide, some of the first and the second portions of the light beam to provide an exiting light beam associated with the virtual image that is based on the first and second phases.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: November 12, 2019
    Assignee: Molecular Imprints, Inc.
    Inventors: Kang Luo, Vikramjit Singh, Frank Y. Xu
  • Patent number: 10444422
    Abstract: A multi-waveguide optical structure, including multiple waveguides stacked to intercept light passing sequentially through each waveguide, each waveguide associated with a differing color and a differing depth of plane, each waveguide including: a first adhesive layer, a substrate having a first index of refraction, and a patterned layer positioned such that the first adhesive layer is between the patterned layer and the substrate, the first adhesive layer providing adhesion between the patterned layer and the substrate, the patterned layer having a second index of refraction less than the first index of refraction, the patterned layer defining a diffraction grating, wherein a field of view associated with the waveguide is based on the first and the second indices of refraction.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: October 15, 2019
    Assignee: Molecular Imprints, Inc.
    Inventors: Frank Y. Xu, Michael Nevin Miller, Kang Luo, Vikramjit Singh, Michael Klug
  • Patent number: 10379438
    Abstract: An imprint lithography method of configuring an optical layer includes depositing a set of droplets atop a side of a substrate in a manner such that the set of droplets do not contact a functional pattern formed on the substrate. The imprint lithography method further includes curing the set of droplets to form a spacer layer associated with the side of the substrate and of a height selected such that the spacer layer can support a surface adjacent the substrate and spanning the set of droplets at a position spaced apart from the functional pattern.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: August 13, 2019
    Assignee: Molecular Imprints, Inc.
    Inventors: Vikramjit Singh, Michael N. Miller, Frank Y. Xu, Christopher Fleckenstein
  • Patent number: 10317806
    Abstract: Methods, systems, and apparatus for the loading and unloading of substrates, such as semiconductor wafers, involving microlithography and similar nano-fabrication techniques. The system includes two or more pedestals; a substrate chuck including two or more channels; a turntable having a top surface and a first end positioned opposite a second end, each of the first and second ends including a respective opening, each opening including two or more cutouts and two or more tabs, the turntable rotatable between first and second positions and an actuator system to adjust distances between the turntable and the substrate chuck and between the turntable and the pedestals.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: June 11, 2019
    Assignee: Molecular Imprints, Inc.
    Inventors: Roy Patterson, Christopher John Fleckenstein, Matthew S. Shafran, Charles Scott Carden, Satish Sadam, Ryan Christiansen
  • Patent number: 10274823
    Abstract: Micro- and nano-patterns in imprint layers formed on a substrate and lithographic methods for forming such layers. The layers include a plurality of structures, and a residual layer having a residual layer thickness (RLT) that extends from the surface of the substrate to a base of the structures, where the RLT varies across the surface of the substrate according to a predefined pattern.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: April 30, 2019
    Assignee: Molecular Imprints, Inc.
    Inventors: Vikramjit Singh, Kang Luo, Michael Nevin Miller, Shuqiang Yang, Frank Y. Xu
  • Patent number: 10241260
    Abstract: Techniques are described for using confinement structures and/or pattern gratings to reduce or prevent the wicking of sealant polymer (e.g., glue) into the optically active areas of a multi-layered optical assembly. A multi-layered optical structure may include multiple layers of substrate imprinted with waveguide grating patterns. The multiple layers may be secured using an edge adhesive, such as a resin, epoxy, glue, and so forth. A confinement structure such as an edge pattern may be imprinted along the edge of each layer to control and confine the capillary flow of the edge adhesive and prevent the edge adhesive from wicking into the functional waveguide grating patterns of the layers. Moreover, the edge adhesive may be carbon doped or otherwise blackened to reduce the reflection of light off the edge back into the interior of the layer, thus improving the optical function of the assembly.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: March 26, 2019
    Assignee: Molecular Imprints, Inc.
    Inventors: Michael Nevin Miller, Frank Y. Xu, Vikramjit Singh, Eric C. Browy, Jason Schaefer, Robert D. TeKolste, Victor Kai Liu, Samarth Bhargava, Jeffrey Dean Schmulen, Brian T. Schowengerdt
  • Patent number: 10025202
    Abstract: Methods, systems, and apparatus for the loading and unloading of substrates, such as semiconductor wafers, involving microlithography and similar nano-fabrication techniques. The system includes two or more pedestals; a substrate chuck including two or more channels; a turntable having a top surface and a first end positioned opposite a second end, each of the first and second ends including a respective opening, each opening including two or more cutouts and two or more tabs, the turntable rotatable between first and second positions and an actuator system to adjust distances between the turntable and the substrate chuck and between the turntable and the pedestals.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: July 17, 2018
    Assignee: Molecular Imprints, Inc.
    Inventors: Roy Patterson, Christopher John Fleckenstein, Matthew S. Shafran, Charles Scott Carden, Satish Sadam, Ryan Christiansen
  • Patent number: 9816186
    Abstract: Methods and systems are provided for fabricating polymer-based imprint lithography templates having thin metallic or oxide coated patterning surfaces. Such templates show enhanced fluid spreading and filling (even in absence of purging gases), good release properties, and longevity of use. Methods and systems for fabricating oxide coated versions, in particular, can be performed under atmospheric pressure conditions, allowing for lower cost processing and enhanced throughput.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: November 14, 2017
    Assignee: Molecular Imprints, Inc.
    Inventors: Se Hyun Ahn, Byung-Jin Choi, Frank Y. Xu
  • Patent number: 9770850
    Abstract: Provided is an imprint apparatus that imprints a pattern formed on a mold onto a substrate. The imprint apparatus includes a substrate holder that holds the substrate and can move in a direction along the surface of the substrate; a gas supply unit for supplying a gas into a space between a pattern part of the mold and the substrate; and a wall part that is disposed so as to enclose the space that is supplied with gas, wherein at a position opposed to the substrate and the mold, the wall part faces the substrate holder or the substrate with a gap therebetween.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: September 26, 2017
    Assignees: CANON KABUSHIKI KAISHA, CANON NANOTECHNOLOGIES, INC., MOLECULAR IMPRINTS, INC.
    Inventors: Makoto Mizuno, Tsuyoshi Arai, Yukio Takabayashi, Steven C. Shackleton, Byung-Jin Choi
  • Patent number: 9725807
    Abstract: Methods and systems are provided for fabricating polymer-based imprint lithography templates having thin metallic or oxide coated patterning surfaces. Such templates show enhanced fluid spreading and filling (even in absence of purging gases), good release properties, and longevity of use. Methods and systems for fabricating oxide coated versions, in particular, can be performed under atmospheric pressure conditions, allowing for lower cost processing and enhanced throughput.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: August 8, 2017
    Assignees: CANON NANOTECHNOLGIES, INC., MOLECULAR IMPRINTS, INC.
    Inventors: Se Hyun Ahn, Byung-Jin Choi, Frank Y. Xu
  • Patent number: 9616614
    Abstract: Methods and systems are provided for patterning polymerizable material dispensed on flexible substrates or flat substrates using imprint lithography techniques. Template replication methods and systems are also presented where patterns from a master are transferred to flexible substrates to form flexible film templates. Such flexible film templates are then used to pattern large area flat substrates. Contact between the imprint template and substrate can be initiated and propagated by relative translation between the template and the substrate.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: April 11, 2017
    Assignees: Canon Nanotechnologies, Inc., Molecular Imprints, Inc.
    Inventors: Byung-Jin Choi, Se Hyun Ahn, Mahadevan GanapathiSubramanian, Michael N. Miller, Sidlgata V. Sreenivasan
  • Patent number: 9529274
    Abstract: In an imprint lithography system, a recessed support on a template chuck may alter a shape of a template positioned thereon providing minimization and/or elimination of premature downward deflection of outer edges of the template in a nano imprint lithography process.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: December 27, 2016
    Assignees: Canon Nanotechnologies, Inc., Molecular Imprints, Inc.
    Inventors: Mahadevan GanapathiSubramanian, Mario Johannes Meissl, Avinash Panga, Byung-Jin Choi
  • Patent number: 9514950
    Abstract: Methods of increasing etch selectivity in imprint lithography are described which employ material deposition techniques that impart a unique morphology to the multi-layer material stacks, thereby enhancing etch process window and improving etch selectivity. For example, etch selectivity of 50:1 or more between patterned resist layer and deposited metals, metalloids, or non-organic oxides can be achieved, which greatly preserves the pattern feature height prior to the etch process that transfers the pattern into the substrate, allowing for sub-20 nm pattern transfer at high fidelity.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: December 6, 2016
    Assignees: Canon Nanotechnologies, Inc., Molecular Imprints, Inc.
    Inventors: Zhengmao Ye, Dwayne L. LaBrake
  • Patent number: 9452574
    Abstract: Described are methods of forming large area templates useful for patterning large area optical devices including e.g. wire grid polarizers (WGPs). Such methods provide for seamless patterning of such large area devices.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 27, 2016
    Assignees: Canon Nanotechnologies, Inc., Molecular Imprints, Inc.
    Inventors: Douglas J. Resnick, Michael N. Miller, Frank Y. Xu
  • Patent number: RE47483
    Abstract: A nanoimprint lithography template including, inter alia, a body having first and second opposed sides with a first surface disposed on the first side, the second side having a recess disposed therein, the body having first and second regions with the second region surrounding the first region and the recess in superimposition with the first region, with a portion of the first surface in superimposition with the first region being spaced-apart from the second side a first distance and a portion of the first surface in superimposition with the second region being spaced-apart from the second side a second distance, with the second distance being greater than the first distance; and a mold disposed on the first side of the body in superimposition a portion of the first region.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: July 2, 2019
    Assignees: Molecular Imprints, Inc., Canon Nanotechnologies, Inc.
    Inventors: Douglas J. Resnick, Mario Johannes Meissl, Byung-Jin Choi, Sidlgata V. Sreenivasan