Patents Assigned to Molecular Imprints, Inc.
  • Patent number: 8846195
    Abstract: An imprint lithography imprinting stack includes a substrate and a polymeric adhesion layer adhered to the substrate. The polymeric adhesion layer includes polymeric components with an extended backbone length of at least about 2 nm. The backbones of the polymeric components may be substantially aligned in a planar configuration on the surface of the substrate, such that a thickness of the polymeric adhesion layer is less than about 2 nm.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: September 30, 2014
    Assignees: Canon Nanotechnologies, Inc., Molecular Imprints, Inc.
    Inventors: Frank Y. Xu, Edward Brian Fletcher
  • Patent number: 8828297
    Abstract: Methods of making nano-scale structures with geometric cross-sections, including convex or non-convex cross-sections, are described. The approach may be used to directly pattern substrates and/or create imprint lithography templates or molds that may be subsequently used to directly replicate nano-shaped patterns into other substrates, such as into a functional or sacrificial resist to form functional nanoparticles.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: September 9, 2014
    Assignees: Molecular Imprints, Inc., Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Vikramjit Singh, Frank Y. Xu, Byung-Jin Choi
  • Patent number: 8808808
    Abstract: The invention provides a method of applying an adhesion primer layer for an imprint lithography process that includes contacting a fluid with a surface of a substrate in a coating process and initiating a chemical reaction that forms a covalent bond between a component in the fluid and the surface of the substrate such that an adhesion primer layer is adhered to the surface of the substrate. A polymeric layer may be adhered to the surface of the substrate coated with the adhesion primer layer. The method allows adhesion primer coating for double-sided imprinting applications including patterned magnetic media.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: August 19, 2014
    Assignee: Molecular Imprints, Inc.
    Inventors: Frank Y. Xu, Sidlgata V. Sreenivasan, Edward Brian Fletcher
  • Patent number: 8802747
    Abstract: A lithography method for forming nanoparticles includes patterning sacrificial material on a multilayer substrate. In some cases, the pattern is transferred to or into a removable layer of the multilayer substrate, and functional material is disposed on the removable layer of the multilayer substrate and solidified. At least a portion of the functional material is then removed to expose protrusions of the removable layer, and pillars of the functional material are released from the removable layer to yield nanoparticles. In other cases, the multilayer substrate includes the functional material, and the pattern is transferred to or into a removable layer of the multilayer substrate. The sacrificial layer is removed, and pillars of the functional material are released from the removable layer to yield nanoparticles.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: August 12, 2014
    Assignee: Molecular Imprints, Inc.
    Inventors: Frank Y. Xu, Sidlgata V. Sreenivasan, Shuqiang Yang
  • Publication number: 20140212534
    Abstract: An imprint lithography template includes a porous material defining a multiplicity of pores with an average pore size of at least about 0.4 nm. The porous material includes silicon and oxygen, and a ratio of Young's modulus (E) to relative density of the porous material with respect to fused silica (?porous/?fused silica) is at least about 10:1. A refractive index of the porous material is between about 1.4 and 1.5. The porous material may form an intermediate layer or a cap layer of an imprint lithography template. The template may include a pore seal layer between a porous layer and a cap layer, or a pore seal layer on top of a cap layer.
    Type: Application
    Filed: January 30, 2013
    Publication date: July 31, 2014
    Applicant: MOLECULAR IMPRINTS, INC.
    Inventors: Edward B. Fletcher, Frank Y. Xu, Weijun Liu, Fen Wan, Marlon Menezes, Kosta S. Selinidis
  • Publication number: 20140117574
    Abstract: Systems and methods for improving robust layer separation during the separation process of an imprint lithography process are described. Included are methods of matching strains between a substrate to be imprinted and the template, varying or modifying the forces applied to the template and/or the substrate during separation, or varying or modifying the kinetics of the separation process.
    Type: Application
    Filed: January 8, 2014
    Publication date: May 1, 2014
    Applicant: Molecular Imprints, Inc.
    Inventors: Niyaz Khusnatdinov, Frank Y. Xu, Mario Johannes Meissl, Michael N. Miller, Ecron D. Thompson, Gerard M. Schmid, Pawan Kumar Nimmakayala, Xiaoming Lu, Byung- Jin Choi
  • Publication number: 20140100346
    Abstract: A lithography method for forming nanoparticles includes patterning sacrificial material on a multilayer substrate. In some cases, the pattern is transferred to or into a removable layer of the multilayer substrate, and functional material is disposed on the removable layer of the multilayer substrate and solidified. At least a portion of the functional material is then removed to expose protrusions of the removable layer, and pillars of the functional material are released from the removable layer to yield nanoparticles. In other cases, the multilayer substrate includes the functional material, and the pattern is transferred to or into a removable layer of the multilayer substrate. The sacrificial layer is removed, and pillars of the functional material are released from the removable layer to yield nanoparticles.
    Type: Application
    Filed: January 31, 2011
    Publication date: April 10, 2014
    Applicant: MOLECULAR IMPRINTS, INC.
    Inventors: Frank Y. Xu, Sidlgata V. Sreenivasan
  • Patent number: 8691134
    Abstract: Droplets of polymerizable material may be patterned on a film sheet using a roll-to-roll system. The droplets of polymerizable material may be dispensed on the film sheet such that a substantially continuous patterned layer may be formed on the film sheet. A contact system provides for smooth fluid front progression the polymerizable material during imprinting. A gas purging system may be positioned during imprinting. Gas purging systems may provide for purging in parallel as fluid front of polymerizable material moves through roll-to-roll system.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: April 8, 2014
    Assignee: Molecular Imprints, Inc.
    Inventor: Byung-Jin Choi
  • Patent number: 8652393
    Abstract: Systems and methods for improving robust layer separation during the separation process of an imprint lithography process are described. Included are methods of matching strains between a substrate to be imprinted and the template, varying or modifying the forces applied to the template and/or the substrate during separation, or varying or modifying the kinetics of the separation process.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: February 18, 2014
    Assignee: Molecular Imprints, Inc.
    Inventors: Niyaz Khusnatdinov, Frank Y. Xu, Mario Johannes Meissl, Michael N. Miller, Ecron D. Thompson, Gerard M. Schmid, Pawan Kumar Nimmakayala, Xiaoming Lu, Byung-Jin Choi
  • Patent number: 8647554
    Abstract: In nano-imprint lithography it is important to detect thickness non-uniformity of a residual layer formed on a substrate. Such non-uniformity is compensated such that a uniform residual layer may be formed. Compensation is performed by calculating a corrected fluid drop pattern.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: February 11, 2014
    Assignee: Molecular Imprints, Inc.
    Inventors: Christopher Ellis Jones, Niyaz Khusnatdinov, Stephen C. Johnson, Philip D. Schumaker, Pankaj B. Lad
  • Publication number: 20140034229
    Abstract: The present invention provides a method for adhering a layer to a substrate that features defining first and second interfaces by having a composition present between the layer and the substrate that forms covalent bonds to the layer and adheres to the substrate employing one or more of covalent bonds, ionic bonds and Van der Waals forces. In this manner, the strength of the adhering force of the layer to the composition is assured to be stronger than the adhering force of the layer to the composition formed from a predetermined adhering mechanism, i.e., an adhering mechanism that does not include covalent bonding.
    Type: Application
    Filed: October 8, 2013
    Publication date: February 6, 2014
    Applicant: Molecular Imprints, Inc.
    Inventor: Frank Y. Xu
  • Patent number: 8641958
    Abstract: Devices positioned between an energy source and an imprint lithography template may block exposure of energy to portions of polymerizable material dispensed on a substrate. Portions of the polymerizable material that are blocked from the energy may remain fluid, while the remaining polymerizable material is solidified.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: February 4, 2014
    Assignee: Molecular Imprints, Inc.
    Inventors: Niyaz Khusnatdinov, Christopher Ellis Jones, Joseph G. Perez, Dwayne L. LaBrake, Ian Matthew McMackin
  • Patent number: 8641941
    Abstract: An imprint lithography template having a photoactive coating adhered to a surface of the template. Irradiation of the photoactive coating promotes cleaning of the template by decomposition of organic material proximate the template (e.g., organic material adsorbed on the template). An imprint lithography system may be configured such that template cleaning is achieved during formation of a patterned layer on an imprint lithography substrate. Cleaning of the template during an imprint lithography process reduces down-time that may be associated with template maintenance.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: February 4, 2014
    Assignee: Molecular Imprints, Inc.
    Inventors: Edward Brian Fletcher, Frank Y. Xu
  • Patent number: 8637587
    Abstract: Release agents with increased affinity toward nano-imprint lithography template surfaces interact strongly with the template during separation of the template from the solidified resist in a nano-imprint lithography process. The strong interaction between the surfactant and the template surface reduces the amount of surfactant pulled off the template surface during separation of a patterned layer from the template in an imprint lithography cycle. Maintaining more surfactant associated with the surface of the template after the separation of the patterned layer from the template may reduce the amount of surfactant needed in a liquid resist to achieve suitable release of the solidified resist from the template during an imprint lithography process. Strong association of the release agent with the surface of the template facilitates the formation of ultra-thin residual layers and dense fine features in nano-imprint lithography.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: January 28, 2014
    Assignee: Molecular Imprints, Inc.
    Inventors: Frank Y. Xu, Weijun Liu
  • Publication number: 20140021167
    Abstract: Methods for creating nano-shaped patterns are described. This approach may be used to directly pattern substrates and/or create imprint lithography molds that may be subsequently used to directly replicate nano-shaped patterns into other substrates in a high throughput process.
    Type: Application
    Filed: September 9, 2013
    Publication date: January 23, 2014
    Applicants: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, MOLECULAR IMPRINTS, INC.
    Inventors: Sidlgata V. Sreenivasan, Shuqiang Yang, Frank Y. Xu, Dwayne L. LaBrake
  • Patent number: 8628712
    Abstract: A method of determining overlay error between a template and a substrate using placement of template features and placement of substrate features in one or more images. Estimated distortion of the template and/or substrate may be determined using the overlay error. One or more forces acting on the template and/or substrate may be varied based on the estimated distortion for subsequent nano-lithography imprinting. Additionally, bias may be introduced in subsequent imprinting steps based on overlay performance.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: January 14, 2014
    Assignee: Molecular Imprints, Inc.
    Inventor: Babak Mokaberi
  • Publication number: 20140008841
    Abstract: Nano imprint lithography templates for purging of fluid during nano imprint lithography processes are described. The templates may include an inner channel and an outer channel. The inner channel constructed to provide fluid communication with a process gas supply to a region between the template and a substrate during the nano imprint lithography process. The outer channel constructed to evacuate fluid and/or confine fluid between the active area of template and the substrate.
    Type: Application
    Filed: September 13, 2013
    Publication date: January 9, 2014
    Applicant: Molecular Imprints, Inc.
    Inventors: Byung-Jin Choi, Yeong-Jun Choi, Kosta S. Selinidis, Steven C. Shackleton
  • Patent number: 8616873
    Abstract: A micro-conformal nanoimprint lithography template includes a backing layer and a nanopatterned layer adhered to the backing layer. The elastic modulus of the backing layer exceeds the elastic modulus of the nanopatterned layer. The micro-conformal nanoimprint lithography template can be used to form a patterned layer from an imprint resist on a substrate, the substrate having a micron-scale defect, such that an excluded distance from an exterior surface of the micron-scale defect to the patterned layer formed by the nanoimprint lithography template is less than a height of the defect. The nanoimprint lithography template can be used to form multiple imprints with no reduction in feature fidelity.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: December 31, 2013
    Assignee: Molecular Imprints, Inc.
    Inventors: Michael N. Miller, Frank Y. Xu, Nicholas A. Stacey
  • Patent number: 8609326
    Abstract: The present invention is directed to a method that attenuates, if not avoids, heating of a substrate undergoing imprint lithography process and the deleterious effects associated therewith. To that end, the present invention includes a method of patterning a field of a substrate with a polymeric material that solidifies in response to actinic energy in which a sub-portion of the field is exposed sufficient to cure the polymeric material is said sub-portion followed by a blanket exposure of all of the polymeric material associated with the entire field to cure/solidify the same.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: December 17, 2013
    Assignee: Molecular Imprints, Inc.
    Inventors: Sidlgata V. Sreenivasan, Byung-Jin Choi
  • Patent number: 8586126
    Abstract: Imprint lithography may comprise generating a fluid map, generating a fluid drop pattern, and applying a fluid to a substrate according to the fluid drop pattern. The fluid drop pattern may be generated using a stochastic process such as a Monte Carlo or structured experiment over the expected range of process variability for drop locations and drop volumes. Thus, variability in drop placement, volume, or both may be compensated for, resulting in surface features being substantially filled with the fluid during imprint.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: November 19, 2013
    Assignee: Molecular Imprints, Inc.
    Inventor: Philip D. Schumaker