Patents Examined by Colleen O'Toole
  • Patent number: 9960770
    Abstract: A semiconductor integrated circuit device may include a target PMOS transistor, a target NMOS transistor, a first stress-applying circuit, a second stress-applying circuit, a third stress-applying circuit and a fourth stress-applying circuit. An inverter may include the target PMOS transistor and the NMOS transistor. The first stress-applying circuit may be configured to apply a first DC level to a gate of the target PMOS transistor. The second stress-applying circuit may be configured to apply a second DC level to a gate of the target NMOS transistor. The third stress-applying circuit may be configured to apply an AC voltage shape to the gate of the target NMOS transistor. The fourth stress-applying circuit may be configured to apply the AC voltage to a drain of the target NMOS transistor.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: May 1, 2018
    Assignee: SK hynix Inc.
    Inventors: Jeong Tae Hwang, Jin Youp Cha, Young Sik Heo
  • Patent number: 9954518
    Abstract: A sensing circuit configured to activate a controller is disclosed. The circuit comprises a first transistor configured to output an activation signal to the controller and a plurality of switches in connection with a base of the transistor. Each of the switches is connected to an identifying resistor. A first output node and a second output node are in communication with the base of the transistor and each of the switches. The first output node and the second output node are separated across an additional identifying resistor. The first output node and the second output node are configured to output a characteristic voltage corresponding a ratio of each of the identifying resistors in response to an input received by one or more of the plurality of switches.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: April 24, 2018
    Assignee: GENTEX CORPORATION
    Inventor: Robert R. Turnbull
  • Patent number: 9929697
    Abstract: In one aspect, a buffer circuit comprises a source or emitter follower input stage and output stage. A load is provided between the stages which comprises a representation of an output load of the buffer circuit. This improves the circuit linearity whilst enabling a high input impedance to be obtained. In another aspect, a buffer circuit comprises a source or emitter follower output stage. A load is in the form of a filter is provided and which comprises a representation of an output load of the buffer circuit.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: March 27, 2018
    Assignee: NXP B.V.
    Inventors: Herve Marie, Lionel Guiraud
  • Patent number: 9928205
    Abstract: A semiconductor apparatus may include a master chip, first to nth slave chips, first to nth slave chip ID generating units, and a master chip ID generating unit. The first to nth slave chip ID generating units are disposed respectively in the first to nth slave chips and connected in series to each other. Each of the first to nth slave chip ID generating units is configured to add a predetermined code value to an mth operation code to generate an (m+1)th operation code. The master chip ID generating unit is disposed in the master chip to generate a variable first operation code in response to a select signal. Here, ‘n’ is an integer that is equal to or greater than 2, and ‘m’ is an integer that is equal to or greater than 1 and equal to or smaller than ‘n’.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: March 27, 2018
    Assignee: SK hynix Inc.
    Inventors: Dae Suk Kim, Jong Chern Lee, Sang Jin Byeon
  • Patent number: 9929723
    Abstract: Embodiments of the present disclosure relate to a flip flop circuit that obviates the need of a transmission gate. The flip flop includes a first match multiplexer, a second match multiplexer and a separable inverter. The first match multiplexer receives an input data signal and generates a feedback output based on the input data signal and the logic levels at two nodes coupled to the first match multiplexer. The separable inverter receives the feedback output and switches the logic level of one of two nodes but maintains the logic level per each clock cycle. The second match multiplexer generates a signal output based on the logic levels at the two nodes and the signal output that is fed back into the second match multiplexer. Embodiments may reduce power consumption and operate at lower voltages.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: March 27, 2018
    Assignee: Apple Inc.
    Inventors: Victor Zyuban, Neela Lohith Penmetsa
  • Patent number: 9923555
    Abstract: Systems and methods for power gating in logic and/or computing circuitry in accordance with embodiments of the inventions are disclosed. In one embodiment, a multiplexer for fine-grain power gating includes a first supply voltage and a second supply voltage, a plurality of inputs, a plurality of selection inputs, a selection circuitry configured to select one of the plurality of inputs, where one of the plurality of inputs is the first supply voltage and one of the selection inputs is a power gating enable input, an output inverter stage including a PMOS transistor and an NMOS transistor, where at least one input to the inverter stage is provided to the gates of the PMOS and NMOS transistors and selection of the power gating enable signal applies the first supply voltage to the gate of the PMOS transistor and places the PMOS transistor in a cutoff mode of operation.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 20, 2018
    Assignee: The Regents of the University of California
    Inventors: Chengcheng Wang, Dejan Markovic
  • Patent number: 9900003
    Abstract: The present invention relates to a high voltage switch circuit, comprising an input port adapted to receive a pulse type input current and an output port, which can be used selectively to conduct an output current to a corresponding electrical load. The switch circuit comprises a buffer stage adapted to sense the input voltage at said input port and to provide a buffered voltage that follows said input voltage. The switch circuit comprises complementary switches electrically connected between said input port and said output port and a voltage level translator electrically connected with said switches, said buffer stage and a control terminal that provides a control signal. The voltage level translator provides suitable gate voltages at the gate terminals of said switches, so that the operation of these latter can be controlled by said control signal.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: February 20, 2018
    Assignee: Fondazione Don Carlo Gnocchi Onlus
    Inventors: Rune Asbjoern Thorsen, Luca Lombardini, Maurizio Ferrarin
  • Patent number: 9898072
    Abstract: The power consumption of a data sampling unit that selects a phase of a clock signal appropriate for sampling payload data is reduced at an input interface. A semiconductor integrated circuit includes an input interface and internal core circuits. The input interface includes a hysteresis circuit and a data sampling unit. The hysteresis circuit detects an input signal between first and second input thresholds as a sleep command. The data sampling unit selects an appropriate phase of a sampling clock signal in accordance with a synchronizing signal and samples payload data. When a sleep command is detected, a sleep signal is also supplied to the internal core circuits and the data sampling unit and they are controlled into a low-power consumption state.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: February 20, 2018
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Kamizuma, Taizo Yamawaki, Yukinori Akamine, Koji Maeda
  • Patent number: 9876490
    Abstract: Systems and methods for providing an approximate differentiation and integration of an input continuous-time signal are provided. The disclosed systems include a continuous-time delay block configured to receive an input continuous-time signal and to delay the input continuous-time signal by a predetermined delay factor to generate a delayed input continuous-time signal, a processing block configured to determine a difference or a sum between two continuous-time signals, and a multiplication block configured to multiply an input continuous signal to provide a multiplied input continuous signal.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: January 23, 2018
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventor: Yannis Tsividis
  • Patent number: 9877104
    Abstract: An audio switch circuit includes negative feedback paths and a transistor that serves as a switching component. The negative feedback paths are turned ON to couple a source voltage and a drain voltage of the transistor to the gate of the transistor when the audio switch circuit is turned ON. The negative feedback paths reduce the slew rate of the gate-to-source voltage of the transistor, thereby slowing the turn-ON of the audio switch circuit to prevent or minimize unwanted audible noise. The negative feedback paths can be turned OFF after a period of time after the audio switch circuit is turned ON for improved total harmonic distortion.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: January 23, 2018
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Lei Huang, Julie Stulz, Eric Li
  • Patent number: 9875994
    Abstract: A multi-chip package may include a plurality of semiconductor chips integrated in a single package and sharing one or more command pins. Each of the semiconductor chips may include: a command decoder suitable for decoding a command to generate a buffer enable signal, a mode enable signal, and a mode signal; a data input buffer suitable for buffering data to output internal data, in response to the buffer enable signal and a common test mode signal; a command controller suitable for receiving the mode enable signal to output a test mode enable signal by selectively blocking the mode enable signal based on the internal data and the common test mode signal; and a test controller suitable for generating the common test mode signal and a test mode signal, based on the test mode enable signal and the mode signal.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: January 23, 2018
    Assignee: SK Hynix Inc.
    Inventors: Chang-Ki Baek, Joon-Woo Choi
  • Patent number: 9859274
    Abstract: A circuit includes first and second semiconductor switches each having a load path and control terminal and their load paths connected in series. At least one of the first and second switches includes a first semiconductor device having a load path and a control terminal, the control terminal coupled to the control terminal of the switch. A plurality of second semiconductor devices each have a load path between a first load terminal and a second load terminal and a control terminal. The second semiconductor devices have their load paths connected in series and connected in series to the load path of the first semiconductor device. Each of the second semiconductor devices has its control terminal connected to the load terminal of one of the other second semiconductor devices. One of the second semiconductor devices has its control terminal connected to one of the load terminals of the first semiconductor device.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: January 2, 2018
    Assignee: Infineon Technologies Dresden GmbH
    Inventor: Rolf Weis
  • Patent number: 9859732
    Abstract: GaN-based half bridge power conversion circuits employ control, support and logic functions that are monolithically integrated on the same devices as the power transistors. In some embodiments a low side GaN device communicates through one or more level shift circuits with a high side GaN device. Both the high side and the low side devices may have one or more integrated control, support and logic functions. Some devices employ electro-static discharge circuits and features formed within the GaN-based devices to improve the reliability and performance of the half bridge power conversion circuits.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: January 2, 2018
    Assignee: Navitas Semiconductor, Inc.
    Inventors: Daniel M. Kinzer, Santosh Sharma, Ju Jason Zhang
  • Patent number: 9819332
    Abstract: A circuit that stabilizes an output signal of a voltage regulator includes a glitch amplifier, a pulse generator, and a transistor. The glitch amplifier amplifies glitches in the output signal and generates a glitch amplifier output signal. The pulse generator receives the glitch amplifier output signal and generates a control signal. When there is a positive glitch in the output signal and a voltage level of the glitch amplifier output signal is less than a first threshold voltage, the pulse generator deactivates the control signal, which turns off the transistor. When there is a negative glitch in the output signal and the voltage level of the glitch amplifier output signal is greater than a second threshold voltage, the pulse generator activates the control signal, which turns on the transistor and provides a compensating current surge to reduce a voltage droop in the output signal.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: November 14, 2017
    Assignee: NXP USA, INC.
    Inventors: Ashish Ojha, Parul K. Sharma
  • Patent number: 9806553
    Abstract: A driver circuit is configured using a depletion-mode MOSFET to supply an output voltage across an output capacitor. The driver circuit includes a resistor positioned between two terminals of the MOSFET. In the case of an n-channel depletion-mode MOSFET, the resistor is coupled to the source and the gate. The circuit is a current controlled depletion driver that turns OFF the depletion-mode MOSFET by driving a reverse current through the resistor to establish a negative potential at the gate relative to the source. A Zener diode is coupled between the source of the depletion-mode MOSFET and the output capacitor to establish a voltage differential between the output and the MOSFET source.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: October 31, 2017
    Assignee: Flextronics AP, LLC
    Inventor: Mark Telefus
  • Patent number: 9806593
    Abstract: In order to obtain a drive circuit of a power semiconductor device capable of making a fast response to a voltage fluctuation dV/dt and preventing a malfunction of the power semiconductor device while suppressing power consumption with a simple circuit configuration, a control circuit controlling ON and OFF switching of the power semiconductor device, a DC power supply supplying a voltage between control terminals of the power semiconductor device, and a switching element connected between the control terminals of the power semiconductor device are provided. The switching element turns ON in a case where a power supply voltage of the DC power supply drops or in a case where the voltage between the control terminals of the power supply device increases in a state where the power supply voltage of the DC power supply has dropped, and thereby causes a short-circuit between the control terminals of the power semiconductor device.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: October 31, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yasushi Nakayama, Ryosuke Nakagawa
  • Patent number: 9793802
    Abstract: A MEMS capacitive sensor biasing circuit. The circuit includes a high-voltage (HV) NMOS switch, an inductor, a diode, and a capacitor. The HV NMOS switch has a source coupled to ground. The inductor has a first node coupled to a drain of the HV NMOS switch, and a second node coupled to a DC power source supplying a first DC voltage. The diode has an anode coupled to the first node of the inductor and the drain of the HV NMOS switch. The capacitor has a first node coupled to a cathode of the diode, and a second node coupled to the ground.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: October 17, 2017
    Assignee: Robert Bosch GmbH
    Inventor: John M. Muza
  • Patent number: 9793889
    Abstract: A semiconductor device includes a first transistor, a second transistor coupled in parallel with the first transistor, and a first parasitic inductance between an emitter of the first transistor and an emitter of the second transistor. The semiconductor device includes a first circuit configured to provide a first gate driver signal to the first transistor based on a common driver signal and a second circuit configured to provide a second gate driver signal to the second transistor based on the common driver signal. The first circuit and the second circuit are configured to compensate for a voltage drop across the first parasitic inductance such that the first gate driver signal and the second gate driver signal are in phase with and at the same magnitude as the common driver signal.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: October 17, 2017
    Assignee: Infineon Technologies AG
    Inventors: Reinhold Bayerer, Piotr Luniewski
  • Patent number: 9748959
    Abstract: Circuits, apparatuses, and methods are disclosed for frequency division. In one such example circuit, a frequency divider is configured to alternate between providing a common frequency clock signal as an output clock signal through a first circuit responsive to a reference clock signal and providing a reduced frequency clock signal as the output clock signal through a second circuit responsive to the reference clock signal. The first and second circuits share a shared circuit through which the output clock signal is provided. An enable circuit is configured to cause the frequency divider to alternate between providing the common frequency clock signal as the output clock signal through the first circuit and the reduced frequency clock signal as the output clock signal through the second circuit.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: August 29, 2017
    Assignee: Micron Technology, Inc.
    Inventor: Tyler J. Gomm
  • Patent number: 9742394
    Abstract: A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: August 22, 2017
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventor: Ronald Jeffrey Focia