Patents Examined by Colleen O'Toole
  • Patent number: 9413351
    Abstract: An integrated circuit device comprises at least one power gating arrangement, including at least one gated power domain, and at least one power gating component operably coupled between at least one node of the at least one gated power domain and at least a first power supply node. The at least one power gating component is arranged to selectively couple the at least one node of the at least one gated power domain to the at least first power supply node.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: August 9, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sergey Sofer, Valery Neiman, Michael Priel
  • Patent number: 9407250
    Abstract: The disclosure presented herein provides example embodiments of systems for accurate multiplexing. The systems and methods presented may be suitable for non-limiting examples of analog to digital conversion with a switched input voltage (for a switched capacitor application) or any circuit with high voltage/high accuracy voltage multiplexing. In an example embodiment, pulsed current sources may be implemented to rapidly turn on and turn off the selected and unselected multiplexer ports while maintaining relatively low power consumption. A Kelvin input port may allow a high voltage input to be accurately sensed by avoiding a voltage drop associated with a selected pass gate p-channel FET channel resistance and parasitic wire resistance. The Kelvin input port biases the gate of a pass FET structure whose body terminals are allowed to remain floating.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: August 2, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Bradford Lawrence Hunter, Richard David Nicholson, Wallace Edward Matthews
  • Patent number: 9323268
    Abstract: A switching circuit is electrically coupled between a connection terminal and an output terminal of a transmission channel and includes first and second switching transistors electrically coupled in series to each other and having respective body diodes in anti-series, between the connection terminal and the output terminal. The switching circuit comprises a bootstrap circuit connected to respective first and second control terminals of these first and one second switching transistors, as well as to respective first and second voltage references. The bootstrap circuit includes a first parasitic capacitance electrically coupled between the first control terminal and a first bootstrap node, and a second parasitic capacitance electrically coupled between the second control terminal and a second bootstrap node. The parasitic capacitances have value of at least one order of magnitude lower with respect to the gate-source capacitances of the first and second switching transistors.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: April 26, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Sandro Rossi, Antonio Ricciardo, Davide Ugo Ghisu
  • Patent number: 9276570
    Abstract: Radio-frequency (RF) switch circuits are disclosed having transistor gate voltage compensation to provide improved switching performance. RF switch circuits include a plurality of field-effect transistors (FETs) connected in series between first and second nodes, each FET having a gate. A compensation network including a coupling circuit couples the gates of each pair of neighboring FETs.
    Type: Grant
    Filed: July 6, 2013
    Date of Patent: March 1, 2016
    Assignee: Skyworks Solutions, Inc.
    Inventors: Anuj Madan, Fikret Altunkilic, Guillaume Alexandre Blin
  • Patent number: 9264028
    Abstract: An apparatus includes a signal converter configured to convert a voltage signal into a current signal and an analog digital converter (ADC) configured to convert the current signal to a digital signal. The apparatus also includes a digital processor configured to process the digital signal and generate an output signal that indicates a zero crossing point of the mains voltage signal.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: February 16, 2016
    Assignee: MARVELL WORLD TRADE LTD.
    Inventor: David Cousinard
  • Patent number: 9246483
    Abstract: A high-frequency switching circuit includes a high-frequency switching transistor, wherein a high-frequency signal-path extends via a channel-path of the high-frequency switching transistor. The high-frequency switching circuit includes a control circuit and the control circuit is configured to apply at least two different bias potentials to a substrate of the high-frequency switching transistor, depending on a control signal received by the control circuit.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: January 26, 2016
    Assignee: Infineon Technologies AG
    Inventors: Winfried Bakalski, Hans Taddiken, Nikolay Ilkov, Herbert Kebinger
  • Patent number: 9231578
    Abstract: An auxiliary voltage generating unit for a radio frequency switch includes a first input and a second input respectively configured to receive a first control signal and a second control signal, wherein the first control signal and the second control signal are configured to control which one of a plurality of paths in the radio frequency switch is enabled, and at least one output, configured to output an auxiliary voltage, derived from at least one of the first control signal or the second control signal, that is used to operate the radio frequency switch. The auxiliary voltage may be a bias voltage and/or a voltage used to power an inverter used to enable a selected branch as an isolation branch or shunt branch.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: January 5, 2016
    Assignee: RichWave Technology Corp.
    Inventor: Chen Chih-Sheng
  • Patent number: 9229050
    Abstract: A BIST circuit for high speed applications includes a phase difference detection circuit, a period-to-current conversion circuit having an input coupled to an output of the phase difference detection circuit and a current-to-voltage conversion circuit coupled to an output of the period-to-current conversion circuit. The phase difference detection circuit includes first NAND logic for receiving as inputs an input clock signal and a delayed version of an inverted version of the input clock signal; second NAND logic for receiving as inputs the inverted version of the input clock signal and a delayed version of the input clock signal; third NAND logic for receiving as inputs the input clock signal and the delayed version of the input clock signal; and fourth NAND logic for receiving as inputs the inverted version of the input clock signal and a delayed version of the inverted version of the input clock signal.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: January 5, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Hsien Tsai, Min-Shueh Yuan, Chih-Hsien Chang
  • Patent number: 9178503
    Abstract: In one embodiment of the invention, a circuit arrangement is provided. The circuit arrangement includes a plurality of differential amplifiers, coupled in parallel, including at least a first differential amplifier and a second differential amplifier. Each differential amplifier includes an adjustable current control circuit coupled to limit a tail current passing through the differential amplifier.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: November 3, 2015
    Assignee: XILINX, INC.
    Inventor: Cheng-Hsiang Hsieh
  • Patent number: 9143092
    Abstract: A method of differential signal transfer from a differential input Vinp and Vinn having a common mode input voltage that can be higher than the power supply voltage by providing an input chopper having Vinp and Vinn as a differential input, providing an output chopper, capacitively coupling a differential output Voutp and Voutn of the input chopper to a differential input of the output chopper, capacitively coupling a clock to the input chopper and coupling the clock to the output chopper, the clock having a first phase and a second phase opposite from the first phase, the first phase being coupled to the gates of the first and second transistors and the second phase being coupled to the gates of the third and fourth transistors, and providing protection of the gates of the first through fourth transistors from excessive voltages. Various embodiments are disclosed.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: September 22, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Johan Hendrik Huijsing, Qinwen Fan, Kofi Afolabi Anthony Makinwa
  • Patent number: 9112507
    Abstract: A phase-locked loop (PLL) circuit includes a voltage-controlled oscillator (VCO) having a VCO input for receiving a control voltage and a VCO output, a feedback loop between the VCO input and the VCO output, and a start-up circuit having a start-up circuit input and a start-up circuit output. The start-up circuit output is coupled to the VCO input and the start-up circuit input is coupled to the VCO output. The start-up circuit provides a voltage at its start-up circuit output during a start-up phase, which terminates after a predetermined number of feedback pulses are detected by the start-up circuit.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: August 18, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Hung Chen, Mao-Hsuan Chou, Tsung-Hsien Tsai
  • Patent number: 9093232
    Abstract: An electronic switch may include transfer transistor having a first conduction terminal for receiving an input signal, a second conduction terminal, and a control terminal. The transfer transistor may enable/disable a transfer of the input signal from the first conduction terminal to the second conduction terminal according to a control signal. The control signal may take a first value and a second value different from the first value, a difference between the first value and the second value defining, in absolute value, an operative value of the control signal. The electronic switch may further comprise a driving circuit for receiving the input signal and the control signal, and for providing a driving signal equal to the sum between the input signal and the operative value of the control signal to the control terminal of the transfer transistor.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: July 28, 2015
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Enrico Castaldo, Antonino Conte, SantiNunzioAntonino Pagano, Stefania Rinaldi
  • Patent number: 9041458
    Abstract: An apparatus includes a biquad filter having first and second lossy integrators and multiple input networks. Each lossy integrator includes an amplifier, and each input network is coupled to an input of the amplifier in one of the lossy integrators. Each input network includes multiple resistors and a capacitor arranged in a T-structure. In a single-ended configuration, each input network includes a grounded capacitor. In a fully-differential configuration, each input network includes one of: a grounded capacitor and a floating capacitor coupled to another input network. The amplifiers and resistors could form a portion of an integrated circuit chip, which also includes multiple input/output pins. A single grounded capacitor could be coupled to a single input/output pin of the integrated circuit chip for an input network. A single floating capacitor could be coupled to two input/output pins of the integrated circuit chip for a pair of input networks.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: May 26, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Horia Giuroiu
  • Patent number: 9030236
    Abstract: A phase detection system for providing a phase signal indicative of a phase difference between first and second input signals, with the system including a pair of amplification channels for receiving the input signals, with each channel including a plurality of amplifier stages. The outputs of the two amplification channels are connected to the inputs of a multiplier arrangement, with the arrangement producing an uncompensated phase signal. Compensation circuitry is provided to receive a magnitude signal indicative of the relative magnitudes of the two input signals, with the magnitude signal being used to produce a corrected phase signal indicative of the phase difference between the two input signals.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: May 12, 2015
    Assignee: National Semiconductor Corporation
    Inventors: Marc Gerardus Maria Stegers, Arie Van Staveren
  • Patent number: 9018996
    Abstract: Circuits, architectures, a system and methods for providing quadrature output signals. The circuit generally includes a quadrature signal generator and a plurality of frequency dividers. The plurality of frequency dividers are each configured to receive a plurality of quadrature signal generator outputs at a first frequency and provide a plurality of outputs at a second frequency. The method generally includes providing a plurality of quadrature signals at a first frequency and dividing the first frequency of the quadrature signals by n, wherein n is an odd integer of at least 3, thereby providing a plurality of divided-by-n quadrature outputs at a second frequency, wherein the second frequency is about equal to the first frequency divided by n. The present disclosure further advantageously improves quadrature signal generation accuracy, reliability and/or performance.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: April 28, 2015
    Assignee: Marvell International Ltd.
    Inventor: Hossein Zarei
  • Patent number: 8970275
    Abstract: An integrated circuit that equalizes delay across process corners. A delay equalizer circuit is used to adjust and maintain a relatively constant delay across different process corners. The delay equalizer circuit includes a process monitor and a delay compensator circuit coupled to the process monitor. The process monitor may output a compensating bias voltage for a pMOS transistor and a compensating bias voltage for an nMOS transistor. The compensating bias voltages may be used to regulate and maintain a relatively constant delay through the delay compensator circuit across varying process corners.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: March 3, 2015
    Assignee: Xilinx, Inc.
    Inventor: Guo Jun Ren
  • Patent number: 8970292
    Abstract: An apparatus includes a biquad filter having first and second lossy integrators and multiple input networks. Each lossy integrator includes an amplifier, and each input network is coupled to an input of the amplifier in one of the lossy integrators. Each input network includes multiple resistors and a capacitor arranged in a T-structure. In a single-ended configuration, each input network includes a grounded capacitor. In a fully-differential configuration, each input network includes one of: a grounded capacitor and a floating capacitor coupled to another input network. The amplifiers and resistors could form a portion of an integrated circuit chip, which also includes multiple input/output pins. A single grounded capacitor could be coupled to a single input/output pin of the integrated circuit chip for an input network. A single floating capacitor could be coupled to two input/output pins of the integrated circuit chip for a pair of input networks.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: March 3, 2015
    Assignee: Texas Instruments Incorporated
    Inventor: Horia Giuroiu
  • Patent number: 8963616
    Abstract: A circuit for a phase connection of an inverter includes upper and lower bridge halves and respectively associated upper and lower bridge segments. Each bridge half has an outer switch and an inner switch connected in series. Each bridge segment has a diode and the inner switch of the associated bridge half connected in series. An output of the circuit is respectively connected to upper and lower potentials through the outer switches and is further connected to a center potential applied between the upper and lower potentials through each of the upper and lower bridge segments. Each bridge half further has a parallel power switch. The parallel switch of each bridge half is connected in parallel to the series-connected outer and inner switches of the bridge half. The output of the circuit is further respectively connected to the upper and lower potentials through the parallel switches.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: February 24, 2015
    Assignee: Kostal Industrie Elektrik GmbH
    Inventors: Martin Degener, Michael Kretschmann
  • Patent number: 8963590
    Abstract: A system for initializing circuitry is presented. The system employs a power-on reset circuit having a threshold voltage and a programmable switch circuit. The power-on reset circuit has a detector circuit for detecting a reference voltage, and a one-sided latch for generating an output voltage reflective of the reference voltage. The detector circuit has a threshold after which the one-sided latch is activated. The programmable switch circuit receives the output voltage of the power-on reset circuit and generates an enable signal and its complement based on the status of an internal fuse. The switch point of the power-on reset circuit provides for a rapid increase in output voltage that offsets parasitic leakage current in the programmable switch circuit that can result in improper enable signal output. A high resistance direct path to ground on an output node of the power-on reset circuit prevents residual charge from causing an undesired misfire.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: February 24, 2015
    Assignee: Honeywell International Inc.
    Inventors: Joe G. Guimont, David K. Nelson, Walter W. Heikkila, Anuj Kohli
  • Patent number: 8922263
    Abstract: The power consumption of a data sampling unit that selects a phase of a clock signal appropriate for sampling payload data is reduced at an input interface. A semiconductor integrated circuit includes an input interface and internal core circuits. The input interface includes a hysteresis circuit and a data sampling unit. The hysteresis circuit detects an input signal between first and second input thresholds as a sleep command. The data sampling unit selects an appropriate phase of a sampling clock signal in accordance with a synchronizing signal and samples payload data. When a sleep command is detected, a sleep signal is also supplied to the internal core circuits and the data sampling unit and they are controlled into a low-power consumption state.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: December 30, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Kamizuma, Taizo Yamawaki, Yukinori Akamine, Koji Maeda