Patents Examined by Kathleen Duda
  • Patent number: 11029604
    Abstract: A method of performing extreme ultraviolet lithography process includes applying a protic solvent over an extreme ultraviolet (EUV) photoresist layer located over a substrate after exposure to EUV radiation, heating the protic solvent on the EUV photoresist layer to a post-exposure bake temperature photoresist, and removing the protic solvent from above the EUV photoresist layer prior to developing the EUV photoresist layer.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: June 8, 2021
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventor: Eisuke Ohtomi
  • Patent number: 11029602
    Abstract: A method of forming a photoresist pattern includes forming a protective layer over a photoresist layer formed on a substrate, and selectively exposing the photoresist layer to actinic radiation. The photoresist layer is developed to form a pattern in the photoresist layer, and the protective layer is removed. The protective layer includes a polymer having fluorocarbon pendant groups.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: An-Ren Zi, Chin-Hsiang Lin, Ching-Yu Chang, Yahru Cheng
  • Patent number: 11022879
    Abstract: The method relates to a method of forming an enhanced unexposed photoresist layer from an unexposed photoresist layer on a substrate by increasing the sensitivity of the unexposed photoresist to exposure radiation. The method comprises: providing the substrate with the unexposed photoresist layer in a reaction chamber; providing a first precursor comprising a portion of a photosensitizer sensitive to exposure radiation in the reaction chamber; and, infiltrating the unexposed photoresist layer on the substrate with the first precursor.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: June 1, 2021
    Assignee: ASM IP Holding B.V.
    Inventors: Jan Willem Maes, Krzysztof Kamil Kachel, David Kurt de Roest
  • Patent number: 11022888
    Abstract: The formation of microporous surfaces through polymer induced phase separation in a photopolymer solvent mixture using photopolymerization via light self-focusing and self-trapping. The self-trapping of light sets fixed regions of brightness and darkness, sustained by the polymerization of light, and then wave guiding within the substrate. Phase separation occurs with the solvent phase separating in the regions of darkness and crosslinking in the regions of brightness. Upon removal of the solvent, precise and uniformly dispersed pores are created in the surface. The pore size and spacing may be tuned by adjusting the weight fraction of the photopolymer solvent mixture as well as through changes in the mask pattern.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: June 1, 2021
    Assignee: Syracuse University
    Inventor: Ian D. Hosein
  • Patent number: 11022887
    Abstract: An EUV lithographic structure and methods according to embodiments of the invention includes an EUV photosensitive resist layer disposed directly on an oxide hardmask layer, wherein the oxide hardmask layer is doped with dopant ions to form a doped oxide hardmask layer so as to improve adhesion between the EUV lithographic structure and the oxide hardmask. The EUV lithographic structure is free of a separate adhesion layer.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 1, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yongan Xu, Jing Guo, Ekmini A. De Silva, Oleg Gluschenkov
  • Patent number: 11016386
    Abstract: A method of forming a photoresist pattern includes forming a protective layer over a photoresist layer formed on a substrate, and selectively exposing the protective layer and the photoresist layer to actinic radiation. The protective layer and the photoresist layer are developed to form a pattern in the photoresist layer, and the protective layer is removed. The protective layer includes a polymer having pendant fluorocarbon groups and pendant acid leaving groups.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: May 25, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: An-Ren Zi, Chin-Hsiang Lin, Ching-Yu Chang
  • Patent number: 11009796
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a material layer over a substrate and forming a resist layer over the material layer. The resist layer includes an inorganic material and an auxiliary. The inorganic material includes a plurality of metallic cores and a plurality of first linkers bonded to the metallic cores. The method includes exposing a portion of the resist layer. The resist layer includes an exposed region and an unexposed region. In the exposed region, the auxiliary reacts with the first linkers. The method also includes removing the unexposed region of the resist layer by using a developer to form a patterned resist layer. The developer includes a ketone-based solvent having a formula (a) or the ester-based solvent having a formula (b).
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: May 18, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Hui Weng, An-Ren Zi, Ching-Yu Chang, Chin-Hsiang Lin, Chen-Yu Liu
  • Patent number: 11003082
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a material layer over a substrate and providing a resist solution. The resist solution includes a plurality of first polymers and a plurality of second polymers, each of the first polymers includes a first polymer backbone, and a first acid-labile group (ALG) with a first activation energy bonded to the first polymer backbone. Each of the second polymers includes a second polymer backbone, and a second acid-labile group with a second activation energy bonded to the second polymer backbone, the second activation energy is greater than the first activation energy. The method includes forming a resist layer over the material layer, and the resist layer includes a top portion and a bottom portion, and the first polymers diffuse to the bottom portion, and the second polymers diffuse to the top portion.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: May 11, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Chih Chen, Yahru Cheng, Ching-Yu Chang
  • Patent number: 10990014
    Abstract: A method of patterning a substrate may include providing a blanket photoresist layer on the substrate; performing an ion implantation procedure of an implant species into the blanket photoresist layer, the implant species comprising an enhanced absorption efficiency at a wavelength in the extreme ultraviolet (EUV) range; and subsequent to the performing the ion implantation procedure, performing a patterned exposure to expose the blanket photoresist layer to EUV radiation.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: April 27, 2021
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Tristan Y. Ma, Huixiong Dai, Anthony Renau, John Hautala, Joseph Olson
  • Patent number: 10990013
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a material layer over a substrate and forming a resist layer over the material layer. The resist layer includes an inorganic material and an auxiliary. The inorganic material includes a plurality of metallic cores and a plurality of first linkers bonded to the metallic cores. The method includes exposing a portion of the resist layer. The resist layer includes an exposed region and an unexposed region. In the exposed region, the auxiliary reacts with the first linkers. The method also includes removing the unexposed region of the resist layer by using a developer to form a patterned resist layer. The developer includes a ketone-based solvent having a formula (a), wherein R1 is linear or branched C1-C5 alkyl, and R2 is linear or branched C3-C9 alkyl.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: April 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: An-Ren Zi, Ching-Yu Chang, Chin-Hsiang Lin
  • Patent number: 10969684
    Abstract: A method for protecting a coating on a surface of a component is provided. The method includes a coating step for coating at least a portion of the component with a ceramic slurry. A projecting step is used for projecting a pattern of light onto the component with a lithographic process to expose and solidify a ceramic layer. A removing step is used for removing unexposed portions of the ceramic slurry from the component. A heating step heats the component to sinter the ceramic layer. The ceramic layer is formed with multiple fracture planes.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: April 6, 2021
    Assignee: General Electric Company
    Inventors: Lacey Lynn Schwab, Canan Uslu Hardwicke
  • Patent number: 10969687
    Abstract: A method for forming patterns is provided in the present invention. The process includes the steps of using a first mask to perform a first exposure process to a photoresist, using a second mask to perform a second exposure process to the photoresist, wherein the corners of the second opening patterns in the second mask and the corners of the first opening patterns in the first mask overlap each other, and performing a development process to remove the unexposed portions of the photoresist in the two exposure processes to form staggered hole patterns therein.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: April 6, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Harn-Jiunn Wang, Kai-Ming Liu, Chin-Lung Lin, Yi-Hsiu Lee
  • Patent number: 10962884
    Abstract: An object of the present invention is to provide a treatment liquid for patterning a resist film and a pattern forming method, each of which can simultaneously suppress the occurrence of pattern collapse in a resist L/S pattern and the occurrence of omission failure in a resist C/H pattern. The treatment liquid of the present invention is a treatment liquid for patterning a resist film, which is used for subjecting a resist film obtained from an actinic ray-sensitive or radiation-sensitive resin composition to at least one of development or washing, and contains an organic solvent, in which the treatment liquid contains a first organic solvent having an SP value of 16.3 MPa1/2 or less and a second organic solvent having an SP value of 17.1 MPa1/2 or more.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: March 30, 2021
    Assignee: FUJIFILM Corporation
    Inventors: Hideaki Tsubaki, Toru Tsuchihashi, Wataru Nihashi, Kei Yamamoto
  • Patent number: 10955746
    Abstract: An extreme ultraviolet lithography method is disclosed. In an example, the EUVL method includes forming a resist layer on a substrate; performing a first exposure process to image a first pattern of a first sub-region of a first mask to the resist layer; performing a second exposure process to image a second pattern of a second sub-region of the first mask to the resist layer; and performing a third exposure process to image a third pattern of a first sub-region of a second mask to the resist layer. The second and third patterns are identical to the first pattern. The first, second and third exposure processes collectively form a latent image of the first pattern on the resist layer.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: March 23, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shinn-Sheng Yu, Ching-Fang Yu, Wen-Chuan Wang, Ting-Hao Hsu, Sheng-Chi Chin, Anthony Yen
  • Patent number: 10948820
    Abstract: A method for protecting a coating on a surface of a component is provided. The method includes a coating step that coats at least a portion of the component with a ceramic slurry. A projecting step projects a pattern of light onto the component with a lithographic process to expose and solidify a ceramic layer. A removing step removes unexposed portions of the ceramic slurry from the component. The ceramic layer comprises multiple stress raising elements or multiple anchoring elements.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: March 16, 2021
    Assignee: General Electric Company
    Inventors: Lacey Lynn Schwab, Kathleen Blanche Morey
  • Patent number: 10942452
    Abstract: A method of making microstructures, including: setting a photoresist layer on a surface of a base; covering a surface of the photoresist layer with a photolithography mask plate, wherein the photolithography mask plate includes: a substrate; a patterned chrome layer on a surface of the substrate; a carbon nanotube layer on the patterned chrome layer, wherein a first pattern of the patterned chrome layer is the same as a second pattern of the carbon nanotube layer; a cover layer on the carbon nanotube layer; exposing the photoresist layer to form an exposed photoresist layer by irradiating the photoresist layer through the photolithography mask plate with ultraviolet light; and developing the exposed photoresist layer to obtain a patterned photoresist microstructures.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: March 9, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Patent number: 10942453
    Abstract: A method of making microstructures, including: setting a photoresist layer on a base; covering the photoresist layer with a photolithography mask plate, wherein the photolithography mask plate includes: a substrate; a carbon nanotube layer on the substrate; a patterned chrome layer on the carbon nanotube layer so that the carbon nanotube layer is sandwiched between the patterned chrome layer and the substrate, wherein a first pattern of the patterned chrome layer is the same as a second pattern of the carbon nanotube layer; a cover layer on the patterned chrome layer; exposing the photoresist layer to form an exposed photoresist layer by irradiating the photoresist layer through the photolithography mask plate with ultraviolet light; and developing the exposed photoresist layer to obtain a patterned photoresist microstructures.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: March 9, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Patent number: 10942454
    Abstract: A method of making microstructures, including: setting a photoresist layer on a surface of a base; covering a surface of the photoresist layer with a photolithography mask plate, wherein the photolithography mask plate includes: a substrate; a carbon nanotube composite structure on a surface of the substrate, wherein the carbon nanotube composite structure includes a carbon nanotube layer and a chrome layer coated on the carbon nanotube layer; and a cover layer on the carbon nanotube composite structure; exposing the photoresist layer to form an exposed photoresist layer by irradiating the photoresist layer through the photolithography mask plate with ultraviolet light; and developing the exposed photoresist layer to obtain a patterned photoresist microstructures.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: March 9, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Patent number: 10935889
    Abstract: Provided is a method for patterning a substrate, comprising: forming a layer of radiation-sensitive material on a substrate; preparing a pattern in the layer of radiation-sensitive material using a lithographic process, the pattern being characterized by material structures having a critical dimension (CD) and a roughness; following the preparing the pattern, performing a shrink process to reduce the CD to a reduced CD; and performing a growth process to grow the reduced CD to a target CD. Roughness includes a line edge roughness (LER), a line width roughness (LWR), or both LER and LWR. Performing the shrink process comprises: coating the pattern with a hard mask, the coating generating a hard mask coated resist; baking the hard mask coated resist in a temperature range for a time period, the baking generating a baked coated resist; and developing the baked coated resist in deionized water.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: March 2, 2021
    Assignee: Tokyo Electron Limited
    Inventors: Lior Huli, Nihar Mohanty
  • Patent number: 10915027
    Abstract: A lithography method is provided in accordance with some embodiments. The lithography method includes forming a patterned photoresist on a material layer, applying a first bonding material to a side surface of the patterned photoresist, performing a treatment on the first bonding material to bond the first bonding material to the side surface of the patterned photoresist, wherein the treatment creates a bonding site on the first bonding material configured to bond to a second bonding material, applying the second bonding material to a side surface of the first bonding material, and patterning the material layer by selectively processing a portion of the material layer exposed by the patterned photoresist, the first bonding material, and the second bonding material.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: February 9, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Siao-Shan Wang, Ching-Yu Chang