Patents Examined by Lincoln Donovan
  • Patent number: 10095252
    Abstract: A voltage-to-current converter includes an input stage having a first input and a second input. The first input is connectable to a reference voltage, wherein the voltage of the second input is substantially the same as the voltage at the first input. A feedback loop is coupled between the second input and a voltage feedback node. A current feedback node is connectable to a first node of a resistor; the second node of the resistor is connectable to a voltage input, wherein a bias voltage of the current feedback node is set by the voltage of the voltage feedback node. At least one current mirror mirrors the current input to the current feedback node, the output of the at least one current mirror is the output of the voltage-to-current converter.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: October 9, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Dinesh Jain
  • Patent number: 10096368
    Abstract: A non-volatile memory includes a power switch circuit and a non-volatile cell array. The power switch circuit includes a first transistor, a second transistor and a current source. A first source/drain terminal and a gate terminal of the first transistor receive a first supply voltage and a second supply voltage, respectively. A second source/drain terminal and a body terminal of the first transistor are connected with a node z. A first source/drain terminal and a gate terminal of the second transistor receive the second supply voltage and the first supply voltage, respectively. A second source/drain terminal and a body terminal of the second transistor are connected with the node z. The current source is connected between a bias voltage and the node z. A power terminal of the non-volatile cell is connected with the node z for receiving an output signal.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: October 9, 2018
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventors: Chih-Yang Huang, Wei-Ming Ku
  • Patent number: 10097012
    Abstract: A power-supplying device for wirelessly transmitting alternating current (AC) power to a power-receiving device includes a voltage converter, an inverter circuit connected to the voltage converter, a communication unit configured to receive an output value of a rectification circuit provided in the power-receiving device from the power-receiving device, and a switching control unit configured to control the inverter circuit so that the inverter circuit converts direct current (DC) power into AC power and control whether the voltage converter steps up an input voltage or not based on whether an output value of the voltage converter or the output value of the rectification circuit reaches a specific value.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: October 9, 2018
    Assignee: IHI CORPORATION
    Inventor: Takahiko Murayama
  • Patent number: 10097096
    Abstract: A device includes a first circuit assembly with first circuitry configured on a first upper surface of a first circuit board that includes a first side of power conversion circuit. A first magnetic core is also configured on the first upper surface of the first circuit board. The device also includes a second circuit assembly with second circuitry configured on a second upper surface of a second circuit board that includes a second side of the power conversion circuit. A second magnetic core is also configured on the second upper surface of the second circuit board. The first circuitry of the first circuit assembly is connected to the second circuitry of the second circuit assembly to form the power conversion circuit via at least one of an electrical connection or a magnetic coupling between the first magnetic core and the second magnetic core.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: October 9, 2018
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Jongwon Shin, Masanori Ishigaki
  • Patent number: 10097183
    Abstract: A level shifter includes a signal generator that generates differential signals on a first output and a second output. A first capacitor is coupled between the first output and a first node and a second capacitor is coupled between the second output and a second node. A third capacitor is coupled between the first node and a first voltage potential, wherein the capacitance of the third capacitor is variable. A fourth capacitor is coupled between the second node and the first voltage potential, wherein the capacitance of the fourth capacitor is variable.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: October 9, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Nathan Richard Schemm
  • Patent number: 10097041
    Abstract: The present specification which relates to a wireless power transmission device and a control method, capable of transmitting and receiving power wirelessly comprises a power supply unit for supplying power to a receiving device to transmit power wirelessly; and a power transmission control unit for, periodically generating a waveform with a particular frequency, measuring an attenuation coefficient of the waveform at each cycle, measuring a variation in the attenuation coefficient at each cycle, and determining the type of an external material. The present invention has a technical feature wherein the power transmission control unit determines whether to transmit power wirelessly to the receiving device on the basis of the type of the external material.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: October 9, 2018
    Assignee: LG ELECTRONICS INC.
    Inventors: Byungsang Jung, Beomseok Chae, Yongcheol Park, Kyunghwan Kim
  • Patent number: 10090387
    Abstract: An electronic device having at least a first HEMT transistor and bias circuit able to at least reverse bias the first HEMT transistor by applying an electric voltage VSD of a positive value between a source of the first HEMT transistor and a drain of the first HEMT transistor. The first HEMT transistor is able to be ON when a value of an electric voltage VGD between a gate of the first HEMT transistor and the drain of the first HEMT transistor is higher than a value of a threshold voltage Vth of the first HEMT transistor. The electronic device has, during a forward biasing, a behavior similar to that of a forward biased or reverse biased Zener diode.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: October 2, 2018
    Assignees: Commissariat à l'énergie atomique et aux energies alternatives, ALCATEL LUCENT
    Inventor: Rene Escoffier
  • Patent number: 10088334
    Abstract: The present disclosure is directed to multichannel transducer devices and methods of operation thereof. One example device includes at least two acquisition modules that have different sensitives and a signal processing stage that generates a blended signal representative of a lower gain signal mapped onto a higher gain signal. One example method of operation includes receiving a first signal from a first sensor having a first sensitivity, receiving a second signal from a second sensor having a second sensitivity that is different from the first sensitivity, generating a blended signal by mapping the second signal to the first signal, outputting the first signal while the first signal is below a first threshold and above a second threshold, and outputting the blended signal when the first signal is above the first threshold and when the first signal is below the second threshold.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: October 2, 2018
    Assignee: STMicroelectronics S.r.l.
    Inventor: Andrea Lorenzo Vitali
  • Patent number: 10084347
    Abstract: The present disclosure relates to a power transmitter, a resonance-type contactless power supply and a control method. The resonance-type contactless power supply adjusts a phase difference of an inverter control signal in a current cycle in a manner the same as that in a previous cycle in a case that a power parameter in the current cycle and that in the previous cycle satisfy a predetermined relationship, and adjusts the phase difference of the inverter control signal in the current cycle in a manner opposite to that in the previous cycle in a case that the power parameter in the current cycle and that in the previous cycle don't satisfy the predetermined relationship. The power parameter represents system efficiency. Thus, a suitable input current or voltage of the transmitter-side resonant circuit is determined by scanning actually, so that the system can operate at optimal efficiency.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: September 25, 2018
    Assignee: SILERGY SEMICONDUCTOR TECHNOLOGY (HANGZHOU) LTD.
    Inventors: Wang Zhang, Feng Yu
  • Patent number: 10084006
    Abstract: Provided are an optical receiver that can realize a reduction in the variation of sensitivity in the ultraviolet light region and a reduction in noise in the visible light region and the infrared light region, a portable electronic device, and a method of producing an optical receiver. The first light-receiving device (PD1) and the second light-receiving device (PD2) of the optical receiver (1) are each constituted by forming a second conductivity-type N-type well layer (N_well) on a first conductivity-type P-type substrate (P_sub), forming a first conductivity-type P-type well layer (P_well) in the N-type well layer (N_well), and forming a second conductivity-type N-type diffusion layer (N) in the P-type well layer (P_well). The P-type substrate P_sub, the N-type well layer (N_well), and the P-type well layer (P_well) are electrically at the same potential or are short-circuited.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: September 25, 2018
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masaaki Uchihashi, Kazuhiro Natsuaki, Masayo Uchida, Takahiro Takimoto
  • Patent number: 10082819
    Abstract: A method includes providing a first voltage to a first output node during a first time interval, providing a second voltage to the first output node during a second time interval, and averaging the first and second voltages to provide a reference voltage to a second output node. The first voltage includes a proportional-to-absolute-temperature (PTAT) component, a complementary-to-absolute-temperature (CTAT) component, and a first residual offset component. The second voltage includes the PTAT component, the CTAT component, and a second residual offset component. An apparatus includes a discrete-time circuit to provide the first voltage to the first output node during the first time interval and to provide the second voltage to the first output node during the second time interval, and a filter to average the first and second voltages to provide the reference voltage to the second output node.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: September 25, 2018
    Assignee: Marvell World Trade Ltd.
    Inventors: Weiwei Xu, Prasanna Upadhyaya, Norman Liu, Xiaoyue Wang
  • Patent number: 10084460
    Abstract: A phase locked loop circuit is disclosed. The phase locked loop circuit includes a ring oscillator. The phase locked loop circuit also includes a digital path including a digital phase detector. The phase locked loop circuit further includes an analog path including a linear phase detector. Additionally, the phase locked loop circuit includes a feedback path connecting an output of the ring oscillator to an input of the digital path and an input of the analog path. The digital path and the analog path are parallel paths. The digital path provides a digital tuning signal the ring oscillator that digitally controls a frequency of the ring oscillator. The analog path provides an analog tuning signal the ring oscillator that continuously controls the frequency of the ring oscillator.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: September 25, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jingdong Deng, Chung S. Ho, David Flye, Zhenrong Jin, Ramana M. Malladi
  • Patent number: 10079593
    Abstract: A circuit includes a counter circuit, a logic circuit, and a clock divider. The counter circuit includes a clock divider counter to be loaded with most significant bits of a divider value, and decremented at a same edge of each pulse of a clock signal. The logic circuit compares a value contained in the divider counter to a reference value and generates an end count signal as a function of the value contained in the divider counter matching the reference value, and transitions a toggle signal at a same edge of each pulse of the end count signal. The clock divider counter is reloaded with the most significant bits of the divider value as a function of the end count signal. The clock divider generates a divided version of the clock signal as a function of the toggle signal.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: September 18, 2018
    Assignee: STMicroelectronics Asia Pacific Pte Ltd
    Inventor: Beng-Heng Goh
  • Patent number: 10079596
    Abstract: A semiconductor device capable of preventing deterioration of a transistor caused by a flow of an overcurrent is provided. According to an embodiment, a semiconductor chip includes a first transistor provided between a high-potential side voltage terminal to which a constant voltage generated by reducing a power-supply voltage is supplied and an output terminal, a second transistor provided between a low-potential side voltage terminal to which a ground voltage is supplied and the output terminal, a control circuit controlling turning-on/off of the first and second transistors, a boosting circuit boosting the power-supply voltage by using a voltage of the output terminal to generate an output voltage, and an overvoltage detection circuit detecting an overvoltage of a power-supply line that couples the high-potential side voltage terminal and the first transistor to each other. The control circuit performs control to turn off the second transistor, when the overvoltage has been detected.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: September 18, 2018
    Assignee: Renesas Electronics Corporation
    Inventors: Shinichi Koyama, Takeshi Kusunoki, Wei Zhou, Hiromasa Suzuki
  • Patent number: 10075150
    Abstract: Examples disclosed herein relate to set-reset (SR) latch circuits and methods for manufacturing the same. In some of the disclosed examples, a SR latch circuit includes an inverter storage loop for storing state information and a set of p-channel field-effect transistors (PFETs) for control circuitry. The PFETs may include first and second PFETs connected to a first node of the inverter storage loop, and third and fourth PFETs connected to a second node of the inverter storage loop. Gate terminals of the first and fourth PFETs may be connected to a first control input, and gate terminals of the second and third PFETs may be connected to a second control input.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: September 11, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Christopher Allan Poirier, Ryan Barnhill, Dacheng Zhou
  • Patent number: 10075208
    Abstract: A three-phase transmitter that sets voltages of first, second, and third output terminals based on first, second, and third signals. The transmitter includes a first transmitting section configured to set the voltage of the first output terminal based on the first and third signals; a second transmitting section configured to set the voltage of the second output terminal based on the first and second signals; and a third transmitting section configured to set the voltage of the third output terminal based on the second and third signals.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: September 11, 2018
    Assignee: Sony Corporation
    Inventors: Takanori Saeki, Hironobu Konishi
  • Patent number: 10074989
    Abstract: Remaining power generation capability of power generation apparatuses is estimated to a high degree of accuracy. A power conversion apparatus (1) includes input interfaces (11) that input generated power from each of multiple power generation apparatuses (10) of the same type and a controller (14) that performs MPPT control on a priority basis on at least one input interface among the input interfaces and acquires the remaining power generation capability of the power generation apparatuses (10) connected to the other input interfaces (11) by calculation using the generated current of the power generation apparatus (10) connected to the at least one input interface.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: September 11, 2018
    Assignee: KYOCERA CORPORATION
    Inventor: Masahiro Baba
  • Patent number: 10069481
    Abstract: An electronic system that includes a digitally selectable phase shifter circuit and an insertion loss fine adjustment circuit such that the system as a whole exhibits little or no change in insertion loss when changing phase state, and/or a digitally selectable attenuator circuit and a phase fine adjustment circuit such that the system as a whole exhibits little or no effect on phase when changing attenuation state. Included are methods for selecting adjustment control words for such circuits.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: September 4, 2018
    Assignee: pSemi Corporation
    Inventors: Matt Allison, Eric S. Shapiro
  • Patent number: 10069463
    Abstract: Embodiments of circuits for use with an amplifier that includes multiple amplifier paths include a first circuit and a second circuit in parallel with the first circuit. The first circuit includes a first input coupled to a first power divider output, a first output coupled to a first amplifier path of the multiple amplifier paths, and a first adjustable phase shifter and a first attenuator series coupled between the first input and the first output. The second circuit includes a second input coupled to a second power divider output, a second output coupled to a second amplifier path of the multiple amplifier paths, and a second adjustable phase shifter coupled between the second input and the second output.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: September 4, 2018
    Assignee: NXP USA, INC.
    Inventors: Abdulrhman M. S. Ahmed, Mario M. Bokatius, Paul R. Hart, Joseph Staudinger, Richard E. Sweeney
  • Patent number: 10069342
    Abstract: A power supply apparatus for supplying power in a wireless manner or a wired-wireless manner is provided. The power supply apparatus includes a power conversion unit converting input power into first power, and a wireless power supply unit varying a switching frequency switching the first power to wirelessly transmit the switched first power in one of a first wireless transmission manner or a second wireless transmission manner or wirelessly transmit the switched first power at a frequency within a resonance frequency band of one wireless transmission manner of wireless transmission manners having different resonance frequency bands.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: September 4, 2018
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: In Wha Jeong, Jong Heum Park, Hugh Kim