Patents Examined by Nicole Ippolito Rausch
  • Patent number: 7858934
    Abstract: A combined rf-only/FAIMS apparatus is disclosed for use in mass spectrometry and other applications. The disclosed apparatus includes a plurality of curved electrodes arranged around a central ion transmission channel. FAIMS functionality is removed electronically when not desired by application of radio frequency (rf) waveforms to the curved electrodes.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: December 28, 2010
    Assignee: Thermo Finnigan LLC
    Inventors: Michael W. Belford, Jean Jacques Dunyach
  • Patent number: 7858926
    Abstract: A mass spectrometer includes an ion source and at least one vacuum stage, a means for delivering ions from the ion source to the vacuum stage, a collision cell, a detector, at least two multipole ion guide segments, and independent RF frequency and DC voltage sources applied to the multipole ion guide segments, the RF frequency and DC voltage sources being controlled independently of each other.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: December 28, 2010
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventors: Craig M. Whitehouse, David G. Welkie, Gholamreza Javahery, Lisa Cousins
  • Patent number: 7858956
    Abstract: The invention relates to an irradiation unit for the UV irradiation of particularly web-shaped substrates, comprising a housing (10), a tubular UV lamp (12), arranged therein and a reflector arrangement (14), running along the UV lamp (12). According to the invention, a simple exchangeability may be achieved, whereby the reflector arrangement comprises a support profile (22), retained in the housing (10) and a reflector profile (24), embodied as a shape-retaining molded piece which may be detachably connected thereto.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: December 28, 2010
    Assignee: IST Metz GmbH
    Inventors: Oliver Treichel, Klaus Ebinger, Joachim Jung, Stefan Jung, legal representative, Melanie Niemann, nee Jung, legal representative, Carsten Jung, legal representative, Günter Fuchs
  • Patent number: 7858957
    Abstract: Illumination optics that can be used, for example, for EUV projection microlithography are disclosed. Also disclosed are illumination systems provided with such illumination optics, projection exposure apparatuses provided with such illumination systems, related methods of manufacturing microstructured elements, and microstructured elements obtained by these methods.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: December 28, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Berndt Warm, Guenther Dengel
  • Patent number: 7856665
    Abstract: An apparatus and technique for measuring the electrical capacitance between a conducting tip of a scanning probe microscope and a sample surface is described. A high frequency digital vector network analyzer is connected to the probe tip of the cantilever of an atomic force microscope, and data collection is coordinated by a digital computer using digital trigger signals between the AFM controller and the vector network analyzer. Methods for imaging tip-sample capacitance and spectroscopic measurements at a single point on the sample are described. A method for system calibration is described.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: December 21, 2010
    Assignee: Asylum Research Corporation
    Inventors: Maarten Rutgers, William H. Hertzog, Keith M. Jones, Amir A. Moshar
  • Patent number: 7854016
    Abstract: A process manufactures a probe intended to interact with a storage medium of a probe-storage system, wherein a sacrificial layer is deposited on top of a substrate; a hole is formed in the sacrificial layer; a mold layer is deposited; the mold layer is etched via the technique for forming spacers so as to form a mold region delimiting an opening having an area decreasing towards the substrate. Then a stack of conductive layers is deposited on top of the sacrificial layer, the stack is etched so as to form a suspended structure, formed by a pair of supporting arms arranged to form a V, and an interaction tip projecting monolithically from the supporting arms. Then a stiffening structure is formed, of insulating material, and the suspended structure is fixed to a supporting wafer. The substrate, the sacrificial layer, and, last, the mold region are then removed.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: December 14, 2010
    Assignee: STMicroelectronics S.r.l.
    Inventor: Agostino Pirovano
  • Patent number: 7851755
    Abstract: A beam apparatus has a beam source producing a primary electron beam, an objective lens focusing the beam onto an observed sample, and at least one condenser lens mounted between the beam source and the objective lens. The condenser lens operates such that the beam forms one crossover point between the condenser lens and the objective lens. A first detector is mounted at the crossover point or at a position closer to the sample than the crossover point. A second detector is mounted at a position closer to the electron source than the crossover point.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: December 14, 2010
    Assignee: Jeol Ltd.
    Inventor: Manabu Saito
  • Patent number: 7849516
    Abstract: A method of scanning over a substrate includes implementing a write mode of the substrate by scanning a probe across a substrate, the probe having a spring cantilever probe mechanically fixed to a probe holding structure, a tip with a nanoscale apex, and an actuator for lateral positioning of the tip; the actuator comprising a thermally switchable element and a heating element for heating the thermally switchable element; and heating the heating element to a given temperature so as to locally soften a portion of the substrate and applying a force to the softened portion of the substrate through the tip so as to create one or more indentation marks in the softened portion of the substrate.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: December 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Gerd Binnig, Evangelos Elefheriou, Mark Lantz
  • Patent number: 7849515
    Abstract: A nanotweezer (1) according to the present invention includes: a supporting member (25); an observation probe (10) that projects out from the supporting member (25), and is used when observing a surface of a specimen; a movable arm (20) that is arranged next to the observation probe (10) projecting out from the supporting member (25), and makes closed or opened between the observation probe (10) and the movable arm (20) to hold or release the specimen held between the observation probe (10) and the movable arm (20); and a drive mechanism that drives the movable arm (20) so as to make closed or opened between the observation probe (10) and the movable arm (20), and the supporting member (25), the observation probe (10) and the movable arm (20) are each formed by processing a semiconductor wafer (30) through a photolithography process.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 7, 2010
    Assignees: National University Corporation Kagawa University, AOI Electronics Co., Ltd.
    Inventors: Gen Hashiguchi, Maho Hosogi, Takashi Konno
  • Patent number: 7842932
    Abstract: There is disclosed an ultraviolet radiation device. The device comprises a base portion, a plurality of semiconductor structures connected to the base portion and an ultraviolet radiation transparent element connected to the plurality of semiconductor structures. Preferably: (i) the at least one light emitting diode is in direct contact with the ultraviolet radiation transparent element, or (ii) there is a spacing between the at least one light emitting diode and the ultraviolet radiation transparent element, the spacing being substantially completely free of air. There is also disclosed a fluid treatment system incorporating the ultraviolet radiation device.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: November 30, 2010
    Assignee: Trojan Technologies
    Inventors: Douglas G. Knight, Jim Fraser, Michael Sasges
  • Patent number: 7842936
    Abstract: The present invention relates a probe forming lithography system for generating a pattern on to a target surface such as a wafer, using a black and white writing strategy, i.e. writing or not writing a grid cell, thereby dividing said pattern over a grid comprising grid cells, said pattern comprising features of a size larger than that of a grid cell, in each of which cells said probe is switched “on” or “off, wherein a probe on said target covers a significantly larger surface area than a grid cell, and wherein within a feature a position dependent distribution of black and white writings is effected within the range of the probe size as well as to a method upon which such system may be based.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: November 30, 2010
    Assignee: Mapper Lithography IP B.V.
    Inventors: Pieter Kruit, Remco Jager, Stijn Willem Karel Herman Steenbrink, Marco Jan-Jaco Wieland
  • Patent number: 7838824
    Abstract: The present invention comprises apparatus and methods for rapidly and accurately determining mass-to-charge ratios of molecular ions produced by a pulsed ionization source, and for fragmenting substantially all of the molecular ions produced while rapidly and accurately determining the intensities and mass-to-charge ratios of the fragments produced from each molecular ion.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: November 23, 2010
    Assignee: Virgin Instruments Corporation
    Inventor: Marvin L. Vestal
  • Patent number: 7838851
    Abstract: The present invention provides a method and an apparatus for producing a two-dimensional patterned beam, e.g. a two-dimensional patterned and focused ion beam, for fabricating a nano-structure on a substrate with the precursor gas. In comparison with the conventional focused ion beam that is applied for fabricating a dot-like nano-structure the method is more simplified and easy to be achieved.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: November 23, 2010
    Assignee: Instrument Technology Research Center, National Applied Research Laboratories
    Inventors: Jyh-Shin Chen, Liang-Chiun Chao, Sheng-Yuan Chen, Hsiao-Yu Chou
  • Patent number: 7838853
    Abstract: A patterned beam of radiation is projected onto a substrate. A reflective optical element is used to help form the radiation beam from radiation emitted from a plasma region of a plasma source. In the plasma source, a plasma current is generated in the plasma region. To reduce damage to the reflective optical element, a magnetic field is applied in the plasma region with at least a component directed along a direction of the plasma current. This axial magnetic field helps limit the collapse of the Z-pinch region of the plasma. By limiting the collapse, the number of fast ions emitted may be reduced.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: November 23, 2010
    Assignee: ASML Netherlands B.V.
    Inventors: Vladimir Vitalevitch Ivanov, Vadim Yevgenyevich Banine, Konstantin Nikolaevitch Koshelev
  • Patent number: 7834333
    Abstract: In the charged particle beam lithography system, a pattern area to be drawn is divided into a plurality of frames, a main deflection positions a charged particle beam to a subfield within the frame, and an auxiliary deflection draws a pattern in units of the subfield. The charged particle beam lithography system includes a beam optical system including a deflector deflecting the beam, a driver driving the deflector, and a deflection control portion controlling the driver according to drawing data indicating a pattern to be drawn. The deflection control portion controls the driver according to a settling time that is determined so that an offset of an irradiation position of the charged particle beam has a certain value irrespective of any changes in deflection amount of the auxiliary deflection in the subfield.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: November 16, 2010
    Assignee: NuFlare Technology, Inc.
    Inventors: Rieko Nishimura, Shuichi Tamamushi
  • Patent number: 7834332
    Abstract: A thin film pattern forming device includes a chamber case having an inner space communicated with the outside, a first fixing unit provided in the chamber case, a pattern electrode plate having a certain shape and fixed to the first fixing unit, and a second fixing unit provided in the chamber case and spaced apart from the pattern electrode plate. A substrate on which an inked metallic nano-material is deposited is received on the second fixing unit. The device also includes a power supply unit for supplying power to the first fixing unit and the second fixing unit, and a drying unit for drying the inked metallic nano-material patterned on the substrate.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: November 16, 2010
    Assignee: Top Engineering Co., Ltd.
    Inventors: Chang-Bok Lee, Jung-Woong Son
  • Patent number: 7829842
    Abstract: A method of mass spectrometry having the steps of, in a first cycle: storing sample ions in a first ion storage device; ejecting the stored ions out of the first ion storage device into a separate ion selection device; selecting a subset of the ions in the ion selection device; ejecting the subset of ions selected within the ion selection device to a fragmentation device; directing ions from the fragmentation device back to the first ion storage device without passing them through the said ion selection device; receiving at least some of the ions ejected from the first ion storage device, or their derivatives, back into the first ion storage device; and storing the received ions in the first ion storage device.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: November 9, 2010
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventor: Alexander A. Makarov
  • Patent number: 7829867
    Abstract: An apparatus for irradiating blood or blood products, preferably with ultra violet or visible light, to reduce contaminants in the blood or blood products. A removable radiometer having light integrating chambers detects the light intensity, allowing the radiation characteristics of the apparatus to be calibrated. A control circuit uses the measurements to control the delivery of an effective dose of illumination to blood or blood products in a bag or container. One or more light integrating optical chambers in the radiometer allow a single light sensor to sense light across an entire field. Thermistors in the irradiating apparatus or the radiometer or both sense the temperature of photo sensors. The control circuit compensates for temperature-dependant variations in the output of the photo sensors.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: November 9, 2010
    Assignee: CaridianBCT Biotechnologies, LLC
    Inventors: Dennis J. Hlavinka, Terrence M. Cussen, Daniel T. McGinnis
  • Patent number: 7829844
    Abstract: A substrate for mass spectrometry for effectively performing ionization has been demanded. The substrate for mass spectrometry includes a base, a porous film formed on the base, and an inorganic material film formed on the porous film. The inorganic material film has a plurality of concaves formed vertically to the base, and the diameter of the concaves is not less than 1 nm and less than 1 ?m.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: November 9, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hirokatsu Miyata, Kazuhiro Yamauchi, Kimihiro Yoshimura
  • Patent number: 7820993
    Abstract: The invention relates to a multi-layered radiation protection wall for shielding against gamma and/or particle radiation of a reaction site of an accelerator facility, wherein the radiation protection wall comprises a sandwich-like structure with at least a first and a second layer arrangement, wherein the first layer arrangement has at least a primary shielding layer and the second layer arrangement has at least a secondary shielding layer. Thereby, at least one of the first and the second layer arrangements is sub-divided into a plurality of wall segments, whereby a selective disposal is made possible. Thus an increased cost efficiency is achieved and the environmental impact is lowered.
    Type: Grant
    Filed: November 19, 2005
    Date of Patent: October 26, 2010
    Assignee: GSI Helmholtzzentrum fur Schwerionenforschung GmbH
    Inventors: George Fehrenbacher, Torsten Radon