Patents Examined by Samuel Lair
  • Patent number: 9362365
    Abstract: Various embodiments are provided for graphite and/or graphene based semiconductor devices. In one embodiment, a semiconductor device includes a semiconductor layer and a semimetal stack. In another embodiment, the semiconductor device includes a semiconductor layer and a zero gap semiconductor layer. The semimetal stack/zero gap semiconductor layer is formed on the semiconductor layer, which forms a Schottky barrier. In another embodiment, a semiconductor device includes first and second semiconductor layers and a semimetal stack. In another embodiment, a semiconductor device includes first and second semiconductor layers and a zero gap semiconductor layer. The first semiconductor layer includes a first semiconducting material and the second semi conductor layer includes a second semiconducting material formed on the first semiconductor layer. The semimetal stack/zero gap semiconductor layer is formed on the second semiconductor layer, which forms a Schottky barrier.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: June 7, 2016
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Arthur Foster Hebard, Sefaattin Tongay
  • Patent number: 9337187
    Abstract: A semiconductor device includes a logic circuit and an active element circuit. The logic circuit is provided with semiconductor elements formed in a semiconductor substrate. The active element circuit is provided with transistors formed using semiconductor layers formed over a diffusion insulating film formed above a semiconductor substrate. The active element circuit is controlled by the logic circuit.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: May 10, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Kishou Kaneko, Naoya Inoue, Yoshihiro Hayashi
  • Patent number: 9331245
    Abstract: Disclosed is a nitride semiconductor light-emitting element comprising a p-type nitride semiconductor layer 1, a p-type nitride semiconductor layer 2, and a p-type nitride semiconductor layer 3 placed in order above a nitride semiconductor active layer, wherein the p-type nitride semiconductor layer 1 and p-type nitride semiconductor layer 2 each contain A1, the average A1 composition of the p-type nitride semiconductor layer 1 is equivalent to the average A1 composition of the p-type nitride semiconductor layer 2, the p-type nitride semiconductor layer 3 has a smaller band gap than the p-type nitride semiconductor layer 2, the p-type impurity concentration of the p-type nitride semiconductor layer 2 and the p-type impurity concentration of the p-type nitride semiconductor layer 3 are both lower than the p-type impurity concentration of the p-type nitride semiconductor layer 1, and a method for producing same.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: May 3, 2016
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Mayuko Fudeta, Eiji Yamada
  • Patent number: 9331252
    Abstract: Wavelength converters, including polarization-enhanced carrier capture converters, for solid state lighting devices, and associated systems and methods are disclosed. A solid state radiative semiconductor structure in accordance with a particular embodiment includes a first region having a first value of a material characteristic and being positioned to receive radiation at a first wavelength. The structure can further include a second region positioned adjacent to the first region to emit radiation at a second wavelength different than the first wavelength. The second region has a second value of the material characteristic that is different than the first value, with the first and second values of the characteristic forming a potential gradient to drive electrons, holes, or both electrons and holes in the radiative structure from the first region to the second region. In a further particular embodiment, the material characteristic includes material polarization.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: May 3, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Patent number: 9318595
    Abstract: A method for fabricating a semiconductor device includes ion-implanting germanium into a monocrystalline silicon-containing substrate; forming a gate oxide layer over a surface of the monocrystalline silicon-containing substrate and forming, under the gate oxide layer, a germanium-rich region in which the germanium is concentrated, by performing a plasma oxidation process; and crystallizing the germanium-rich region by performing an annealing process.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: April 19, 2016
    Assignee: SK Hynix Inc.
    Inventors: Seung-Mi Lee, Yun-Hyuck Ji, Beom-Yong Kim, Bong-Seok Jeon
  • Patent number: 9299848
    Abstract: A semiconductor device with a reduced area is provided. The semiconductor device includes a first transistor and a second transistor. The first transistor includes a first conductor and a second conductor arranged with a distance therebetween, a first insulator over the first conductor and the second conductor, a semiconductor over the first insulator, a second insulator over the semiconductor, a third conductor over the second insulator, and a fourth conductor and a fifth conductor that are in contact with the semiconductor. The first conductor includes a region not overlapping with the third conductor with the semiconductor therebetween, the first conductor includes a region overlapping with the second conductor with the semiconductor therebetween, and one of a source electrode and a drain electrode of the second transistor is electrically connected to the third conductor of the first transistor.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: March 29, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kiyoshi Kato
  • Patent number: 9276011
    Abstract: Various embodiments comprise apparatuses and methods, such as a memory stack having a continuous cell pillar. In various embodiments, the apparatus includes a source material, a buffer material, a select gate drain (SGD), and a memory stack arranged between the source material and the SGD. The memory stack comprises alternating levels of conductor materials and dielectric materials. A continuous channel-fill material forms a cell pillar that is continuous from the source material to at least a level corresponding to the SGD.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 1, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Krishna K. Parat
  • Patent number: 9263591
    Abstract: The present invention relates to a method for producing an electronic component, in particular a field-effect transistor (FET), comprising at least one substrate, at least one dielectric, and at least one semiconducting metal oxide, wherein the dielectric or a precursor compound thereof based on organically modified silicon oxide compounds, in particular based on silsequioxanes and/or siloxanes, can be processed out of solution, and is thermally treated at a low temperature from room temperature to 350° C., and the semiconductive metal oxide, in particular ZnO or a precursor compound thereof, can also be processed from solution at a low temperature from room temperature to 350° C.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: February 16, 2016
    Assignee: BASF SE
    Inventors: Friederike Fleischhaker, Veronika Wloka, Thomas Kaiser
  • Patent number: 9263647
    Abstract: Various examples of a light emitting diode (LED) package structure and a manufacturing method thereof are described. In one aspect, a LED package structure includes a carrier, a LED chip, a first annular barricade, a second annular barricade and a fluorescent encapsulant. The LED chip is electrically connected to the carrier. The first annular barricade and the second annular barricade are disposed around the LED chip, with the second annular barricade disposed between the LED chip and the first annular barricade. The fluorescent encapsulant is disposed on the carrier and at least covers the LED chip and the second annular barricade. The fluorescent encapsulant includes at least a type of phosphor and at least a type of gel with the phosphor distributed over a surface of the LED chip.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: February 16, 2016
    Assignee: Everlight Electronics Co., Ltd.
    Inventors: Robert Yeh, Ke-Hao Pan
  • Patent number: 9257595
    Abstract: A nitride LED having improved light extraction efficiency and/or axial luminous intensity is provided. The nitride LED contains a nitride semiconductor substrate having, on a front face thereof, a light-emitting structure made of a nitride semiconductor, wherein a roughened region is provided on a back face of the substrate, the roughened region has a plurality of protrusions, each of the plurality of protrusions has a top point or top plane and has a horizontal cross-section which is circular, except in areas where the protrusion is tangent to other neighboring protrusions, and which has a surface area that decreases on approaching the top point or top plane, the plurality of protrusions are arranged such that any one protrusion is in contact with six other protrusions, and light generated in the light-emitting structure is output to the exterior through the roughened region.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: February 9, 2016
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yuki Haruta, Tadahiro Katsumoto, Kenji Shimoyama
  • Patent number: 9252389
    Abstract: An environmentally sensitive electronic device package including a first adhesive, at least one first side wall barrier, a first substrate, and a second substrate is provided. The first adhesive has a first surface and a second surface opposite to the first surface. The first side wall barrier is distributed in the first adhesive. The first substrate is bonded with the first surface. The first substrate has an environmentally sensitive electronic device formed thereon and the environmentally sensitive electronic device is surrounded by the first side wall barrier. The second substrate is bonded with the second surface. A manufacturing method of the environmentally sensitive electronic device package is also provided.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: February 2, 2016
    Assignee: Industrial Technology Research Institute
    Inventor: Kuang-Jung Chen
  • Patent number: 9252167
    Abstract: An active device array substrate includes a flexible substrate, a gate electrode, a dielectric layer, a channel layer, a source electrode, a drain electrode, and a pixel electrode. The flexible substrate has a transistor region and a transparent region adjacent to each other. The gate electrode is disposed on the transistor region. The dielectric layer covers the flexible substrate and the gate electrode. A portion of the dielectric layer disposed on the gate electrode has a first thickness. Another portion of the dielectric layer disposed on the transparent region has a second thickness less than the first thickness. The channel layer is disposed above the gate electrode. The source electrode and the drain electrode are electrically connected to the channel layer. The pixel electrode is disposed on the dielectric layer which is disposed on the transparent region. The pixel electrode is electrically connected to the drain electrode.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: February 2, 2016
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Jia-Hong Ye, Ssu-Hui Lu, Wu-Hsiung Lin, Chao-Chien Chiu, Ming-Hsien Lee, Chia-Tien Peng, Wei-Ming Huang
  • Patent number: 9240410
    Abstract: A group III-N nanowire is disposed on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first group III-N material, a source region electrically coupled with a first end of the channel region, and a drain region electrically coupled with a second end of the channel region. A second group III-N material on the first group III-N material serves as a charge inducing layer, and/or barrier layer on surfaces of nanowire. A gate insulator and/or gate conductor coaxially wraps completely around the nanowire within the channel region. Drain and source contacts may similarly coaxially wrap completely around the drain and source regions.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: January 19, 2016
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Robert Chau, Benjamin Chu-Kung, Gilbert Dewey, Jack Kavalieros, Matthew Metz, Niloy Mukherjee, Ravi Pillarisetty, Marko Radosavljevic
  • Patent number: 9240324
    Abstract: A method to prevent a gate contact from electrically connecting to a source contact for a plurality of memory cells on a substrate. The method includes depositing and etching gate material to partially fill a space between the pillars and to form a word line for the memory cells, etching a gate contact region for the word line between the pair of pillars, forming a spacer of electrically insulating material in the gate contact region, and depositing a gate contact between the pair of pillars to be in electrical contact with the gate material such that the spacer surrounds the gate contact.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: January 19, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Matthew J. BrightSky, Chung H. Lam, Gen P. Lauer
  • Patent number: 9227836
    Abstract: A hermetically packaged microelectromechanical system (MEMS) device has a substrate with an assembly pad (101) and a plurality of terminals (102); a chip (110) with a MEMS mechanical element (111) of a first height (111a) assembled on the pad and connected to the terminals by wires (120) with an insulating coat (121); a ridge (130) on the substrate, which surrounds the MEMS element (111) with a second height (130c) greater than the first height and comprises a plastic compound (131) filled with particles (132) and a surface (130a, 130b) having an adhering moisture-impermeable seal layer (133); and a moisture-impervious lid (140) attached to the ridge by moisture-proof bonds (150, 151), sealing the volume (160) enclosed by the lid, the chip, and the metalized ridge as a hermetic space for the MEMS element (111).
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: January 5, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Virgil C. Ararao
  • Patent number: 9224808
    Abstract: Uniaxially strained nanowire structures are described. For example, a semiconductor device includes a plurality of vertically stacked uniaxially strained nanowires disposed above a substrate. Each of the uniaxially strained nanowires includes a discrete channel region disposed in the uniaxially strained nanowire. The discrete channel region has a current flow direction along the direction of the uniaxial strain. Source and drain regions are disposed in the nanowire, on either side of the discrete channel region. A gate electrode stack completely surrounds the discrete channel regions.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: December 29, 2015
    Assignee: Intel Corporation
    Inventors: Stephen M. Cea, Seiyon Kim, Annalisa Cappellani
  • Patent number: 9218966
    Abstract: To suppress a decrease in on-state current in a semiconductor device including an oxide semiconductor. Provided is a semiconductor device including the following: an oxide semiconductor film which serves as a semiconductor layer; a gate insulating film including an oxide containing silicon, over the oxide semiconductor film; a gate electrode which overlaps with at least the oxide semiconductor film, over the gate insulating film; and a source electrode and a drain electrode which are electrically connected to the oxide semiconductor film. In the semiconductor device, the oxide semiconductor film overlapping with at least the gate electrode includes a region in which a concentration of silicon distributed from the interface with the gate insulating film toward the inside of the oxide semiconductor film is lower than or equal to 1.1 at. %.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: December 22, 2015
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tatsuya Honda, Masashi Tsubuku, Yusuke Nonaka, Shunpei Yamazaki
  • Patent number: 9219160
    Abstract: A decrease in on-state current in a semiconductor device including an oxide semiconductor film is suppressed. A transistor including an oxide semiconductor film, an insulating film which includes oxygen and silicon, a gate electrode adjacent to the oxide semiconductor film, the oxide semiconductor film provided to be in contact with the insulating film and overlap with at least the gate electrode, and a source electrode and a drain electrode electrically connected to the oxide semiconductor film. In the oxide semiconductor film, a first region which is provided to be in contact with the interface with the insulating film and have a thickness less than or equal to 5 nm has a silicon concentration lower than or equal to 1.0 at. %, and a region in the oxide semiconductor film other than the first region has lower silicon concentration than the first region.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: December 22, 2015
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tatsuya Honda, Masashi Tsubuku, Yusuke Nonaka, Takashi Shimazu, Shunpei Yamazaki
  • Patent number: 9209134
    Abstract: Methods to increase metal interconnect reliability are provided. Methods include forming a conformal barrier layer within an opening in a semiconductor device structure and forming a copper alloy material above the conformal barrier layer. Next, removing the copper alloy material that extends beyond the opening. Removing native oxide from a top surface of the copper alloy material. Further, annealing or applying a plasma treatment to the copper alloy material. Finally, forming a capping layer above the copper alloy material. Notably, near the top of the copper alloy material, smaller copper grain growth may be present. Furthermore, more non-copper alloy atoms are present near the top of the copper alloy material than the bulk of the copper alloy material.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: December 8, 2015
    Assignee: Intermolecular, Inc.
    Inventor: Mankoo Lee
  • Patent number: 9202933
    Abstract: Disclosed is a flash memory using fringing effects and an electrostatic shielding function. A gap between adjacent gate stacks is controlled by fringing effects, and an operation of each of the gate stacks is electrostatically shielded by a gate electrode extending to a tunneling insulation layer. Thus, coupling between the adjacent gate stacks is minimized by electrostatic shielding.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: December 1, 2015
    Assignee: INTELLECTUAL DISCOVERY CO., LTD.
    Inventors: Tae Whan Kim, Joo Hyung You, Sung Ho Kim