Patents Examined by Samuel Lair
  • Patent number: 8816432
    Abstract: Semiconductor devices having vertical channel transistors are provided. The semiconductor device includes an insulation layer on a substrate and a buried bit line on the insulation layer. The buried bit line extends in a first direction. An active pillar is disposed on the buried bit line. The active pillar includes a lower dopant region, a channel region having a first sidewall and an upper dopant region vertically stacked on the buried bit line. A contact gate electrode is disposed to be adjacent to the first sidewall of the channel region. A word line is electrically connected to the contact gate electrode. The word line extends in a second direction intersecting the first direction. A string body connector is electrically connected to the channel region. Related methods are also provided.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: August 26, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sua Kim, Jin Ho Kim, Chulwoo Park
  • Patent number: 8809925
    Abstract: An image sensor pixel includes a photosensitive element, a floating diffusion (“FD”) region, and a transfer device. The photosensitive element is disposed in a substrate layer for accumulating an image charge in response to light. The FD region is disposed in the substrate layer to receive the image charge from the photosensitive element. The transfer device is disposed between the photosensitive element and the FD region to selectively transfer the image charge from the photosensitive element to the FD region. The transfer device includes a gate, a buried channel dopant region and a surface channel region. The gate is disposed between the photosensitive element and the FD region. The buried channel dopant region is disposed adjacent to the FD region and underneath the gate. The surface channel region is disposed between the buried channel dopant region and the photosensitive element and disposed underneath the gate.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: August 19, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Hsin-Chih Tai, Duli Mao, Zhenhong Fu
  • Patent number: 8809911
    Abstract: Plural gate trenches are formed in the surface of an n-type drift region. A gate electrode is formed across a gate oxide film on the inner walls of the gate trenches. P-type base regions are selectively formed so as to neighbor each other in the gate trench longitudinal direction between neighboring gate trenches. An n-type emitter region is formed in contact with the gate trench in a surface layer of the p-type base regions. Also, a p-type contact region with a concentration higher than that of the p-type base region is formed in the surface layer of the p-type base region so as to be in contact with the gate trench side of the n-type emitter region. An edge portion on the gate trench side of the n-type emitter region terminates inside the p-type contact region.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: August 19, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Koh Yoshikawa
  • Patent number: 8809961
    Abstract: An electrostatic discharge (ESD) protection circuit structure includes several diffusion regions and a MOS transistor. The circuit structure includes a first diffusion region of a first type (e.g., P-type or N-type) formed in a first well of the first type, a second diffusion region of the first type formed in the first well of the first type, and a first diffusion region of a second type (e.g., N-type or P-type) formed in a first well of the second type. The first well of the second type is formed in the first well of the first type. The MOS transistor is of the second type and includes a drain formed by a second diffusion region of the second type formed in a second well of the second type bordering the first well of the first type.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: August 19, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Che Tsai, Jam-Wem Lee, Yi-Feng Chang
  • Patent number: 8809926
    Abstract: A semiconductor memory device may include a common source region on a substrate, an active pattern between the substrate and the common source region, a gate pattern facing a sidewall of the active pattern, a gate dielectric pattern between the gate pattern and the active pattern, a variable resistance pattern between the common source region and the active pattern, and an interconnection line.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: August 19, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sua Kim, Jin Ho Kim, Chulwoo Park, Sangbo Lee, Hongsun Hwang
  • Patent number: 8803148
    Abstract: A thin film transistor may include a substrate, a buffer layer on the substrate, a semiconductor layer formed on the buffer layer, a gate insulating pattern on the semiconductor layer, a gate electrode on the gate insulating pattern, an interlayer insulating layer covering the gate electrode and the gate insulating pattern, the interlayer insulating layer having a contact hole and an opening extending therethrough, the contact hole exposing a source area and a drain area of the semiconductor layer, and the opening exposing a channel area of the semiconductor layer, and a source electrode and a drain electrode formed on the interlayer insulating layer, the source electrode being connected with the source area and the drain electrode being connected with the drain area of the semiconductor layer.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: August 12, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Jong-Ryuk Park, Tak-Young Lee, Jin-Wook Seo, Ki-Yong Lee, Heung-Yeol Na
  • Patent number: 8791028
    Abstract: According to one embodiment, a manufacturing method of a semiconductor device includes a step of forming a dummy-fin semiconductor on a semiconductor substrate; a step of forming an insulating layer, into which a lower part of the dummy-fin semiconductor is buried, on the semiconductor substrate; a step of forming a fin semiconductor, which is bonded to a side face at an upper part of the dummy-fin semiconductor, on the insulating layer; and a step of removing the dummy-fin semiconductor on the insulating layer with the fin semiconductor being left on the insulating layer.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: July 29, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kimitoshi Okano
  • Patent number: 8779471
    Abstract: Provided is a field-effect transistor including a gate insulating layer, a first semiconductor crystal layer in contact with the gate insulating layer, and a second semiconductor crystal layer lattice-matching or pseudo lattice-matching the first semiconductor crystal layer. Here, the gate insulating layer, the first semiconductor crystal layer, and the second semiconductor crystal layer are arranged in the order of the gate insulating layer, the first semiconductor crystal layer, and the second semiconductor crystal layer, the first semiconductor crystal layer is made of Inx1Ga1-x1Asy1P1-y1 (0<x1?1, 0?y1?1), the second semiconductor crystal layer is made of Inx2Ga1-x2Asy2P1-y2 (0?x2?1, 0?y2?1, y2?y1), and the electron affinity Ea1 of the first semiconductor crystal layer is lower than the electron affinity Ea2 of the second semiconductor crystal layer.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: July 15, 2014
    Assignees: Sumitomo Chemical Company, Limited, The University of Tokyo, National Institute of Advanced Industrial Science and Technology
    Inventors: Masahiko Hata, Hisashi Yamada, Noboru Fukuhara, Shinichi Takagi, Mitsuru Takenaka, Masafumi Yokoyama, Tetsuji Yasuda, Yuji Urabe, Noriyuki Miyata, Taro Itatani, Hiroyuki Ishii
  • Patent number: 8754461
    Abstract: A method of forming improved spacer isolation in deep trench including recessing a node dielectric, a first conductive layer, and a second conductive layer each deposited within a deep trench formed in a silicon-on-insulator (SOI) substrate, to a level below a buried oxide layer of the SOI substrate, and creating an opening having a bottom surface in the deep trench. Further including depositing a spacer along a sidewall of the deep trench and the bottom surface of the opening, and removing the spacer from the bottom surface of the opening. Performing at least one of an ion implantation and an ion bombardment in one direction at an angle into an upper portion of the spacer. Removing the upper portion of the spacer from the sidewall of the deep trench. Depositing a third conductive layer within the opening.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8742440
    Abstract: Disclosed is a nitride semiconductor light-emitting element comprising a p-type nitride semiconductor layer 1, a p-type nitride semiconductor layer 2, and a p-type nitride semiconductor layer 3 placed in order above a nitride semiconductor active layer, wherein the p-type nitride semiconductor layer 1 and p-type nitride semiconductor layer 2 each contain Al, the average Al composition of the p-type nitride semiconductor layer 1 is equivalent to the average Al composition of the p-type nitride semiconductor layer 2, the p-type nitride semiconductor layer 3 has a smaller band gap than the p-type nitride semiconductor layer 2, the p-type impurity concentration of the p-type nitride semiconductor layer 2 and the p-type impurity concentration of the p-type nitride semiconductor layer 3 are both lower than the p-type impurity concentration of the p-type nitride semiconductor layer 1, and a method for producing same.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: June 3, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Mayuko Fudeta, Eiji Yamada
  • Patent number: 8710489
    Abstract: To provide an epitaxial substrate for electronic devices, in which current flows in a lateral direction, which enables accurate measurement of the sheet resistance of HEMTs without contact, and to provide a method of efficiently producing the epitaxial substrate for electronic devices, the method characteristically includes the steps of forming a barrier layer against impurity diffusion on one surface of a high-resistance Si-single crystal substrate, forming a buffer as an insulating layer on the other surface of the high-resistance Si-single crystal substrate, producing an epitaxial substrate by epitaxially growing a plurality of III-nitride layers on the buffer to form a main laminate, and measuring resistance of the main laminate of the epitaxial substrate without contact.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: April 29, 2014
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Tetsuya Ikuta, Daisuke Hino, Ryo Sakamoto, Tomohiko Shibata
  • Patent number: 8703559
    Abstract: The present invention discloses a thin-film transistor (TFT) array substrate and a manufacturing method thereof. Depositing a transparent conductive layer and a first metal layer in turn on a substrate patterned by a first multi-tone mask (MTM) to form a gate, a common electrode and a reflecting layer; depositing a gate insulation layer and a semiconductor layer patterned by a second MTM to remain the semiconductor layer on the gate; and depositing a second metal layer patterned by a third MTM to form a source and a drain.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: April 22, 2014
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Hua Huang, Pei Jia
  • Patent number: 8686504
    Abstract: The present invention discloses a double diffused drain metal oxide semiconductor (DDDMOS) device and a manufacturing method thereof. The DDDMOS device is formed in a substrate, and includes a first well, a gate, a diffusion region, a source, and a drain. A low voltage device is also formed in the substrate, which includes a second well and a lightly doped drain (LDD) region, wherein the first well and the diffusion region are formed by process steps which also form the second well and the LDD region in the low voltage device, respectively.
    Type: Grant
    Filed: July 22, 2012
    Date of Patent: April 1, 2014
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Tsung-Yi Huang, Chien-Hao Huang
  • Patent number: 8680564
    Abstract: A Group III nitride semiconductor light-emitting device exhibiting reduced contact resistance between a p contact layer and an ITO electrode. The Group III nitride semiconductor light-emitting device has an AlGaN dot-like structure on the p contact layer, and an ITO electrode on the p contact layer and the dot-like structure. The dot-like structure has a structure in which a plurality of AlGaN dots are discretely distributed on the top surface of the p contact layer. The dot-like structure is bonded to oxygen, and oxygen increases on an interface between the p contact layer and the ITO electrode.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: March 25, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Hiroaki Makino, Yoshiki Saito
  • Patent number: 8673754
    Abstract: A method for fabricating a semiconductor device includes ion-implanting germanium into a monocrystalline silicon-containing substrate; forming a gate oxide layer over a surface of the monocrystalline silicon-containing substrate and forming, under the gate oxide layer, a germanium-rich region in which the germanium is concentrated, by performing a plasma oxidation process; and crystallizing the germanium-rich region by performing an annealing process.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: March 18, 2014
    Assignee: SK hynix Inc.
    Inventors: Seung-Mi Lee, Yun Hyuck Ji, Beom-Yong Kim, Bong-Seok Jeon
  • Patent number: 8669172
    Abstract: A semiconductor substrate having a main surface, first and second floating gates formed spaced apart from each other on the main surface of the semiconductor substrate, first and second control gates respectively located on the first and second floating gates, a first insulation film formed on the first control gate, a second insulation film formed on the second control gate to contact the first insulation film, and a gap portion formed at least between the first floating gate and the second floating gate by achieving contact between the first insulation film and the second insulation film are included. With this, a function of a nonvolatile semiconductor device can be ensured and a variation in a threshold voltage of a floating gate can be suppressed.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: March 11, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Yasuaki Yonemochi, Hisakazu Otoi, Akio Nishida, Shigeru Shiratake
  • Patent number: 8659069
    Abstract: A method of forming a gate structure includes forming a tunnel insulation layer pattern on a substrate, forming a floating gate on the tunnel insulation layer pattern, forming a dielectric layer pattern on the floating gate, the dielectric layer pattern including a first oxide layer pattern, a nitride layer pattern on the first oxide layer pattern, and a second oxide layer pattern on the nitride layer pattern, the second oxide layer pattern being formed by performing an anisotropic plasma oxidation process on the nitride layer, such that a first portion of the second oxide layer pattern on a top surface of the floating gate has a larger thickness than a second portion of the second oxide layer pattern on a sidewall of the floating gate, and forming a control gate on the second oxide layer.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: February 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Sung-Ho Heo, Jae-Ho Choi, Hun-Hyeong Lim, Ki-Hyun Hwang, Woo-Sung Lee
  • Patent number: 8653502
    Abstract: The present invention provides a Group III nitride semiconductor light-emitting device exhibiting high-intensity light output in a specific direction and improved light extraction performance. The Group III nitride semiconductor light-emitting device comprises a sapphire substrate, and a layered structure having a light-emitting layer provided on the sapphire substrate and formed of a Group III nitride semiconductor. On the surface on the layered structure side of the sapphire substrate, a two-dimensional periodic structure of mesas is formed with a period which generates a light intensity interference pattern for the light emitted from the light-emitting layer. The light reflected by or transmitted through the two-dimensional periodic structure has an interference pattern.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: February 18, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Kosuke Yahata, Naoki Nakajo, Koichi Goshonoo, Yuya Ishiguro
  • Patent number: 8637365
    Abstract: A method of forming improved spacer isolation in deep trench including recessing a node dielectric, a first conductive layer, and a second conductive layer each deposited within a deep trench formed in a silicon-on-insulator (SOI) substrate, to a level below a buried oxide layer of the SOI substrate, and creating an opening having a bottom surface in the deep trench. Further including depositing a spacer along a sidewall of the deep trench and the bottom surface of the opening, and removing the spacer from the bottom surface of the opening. Performing at least one of an ion implantation and an ion bombardment in one direction at an angle into an upper portion of the spacer. Removing the upper portion of the spacer from the sidewall of the deep trench. Depositing a third conductive layer within the opening.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8587071
    Abstract: An ESD protection circuit includes a MOS transistor of a first type, a MOS transistor of a second type, an I/O pad, and first, second, and third guard rings of the first, second, and first types, respectively. The MOS transistor of the first type has a source coupled to a first node having a first voltage, and a drain coupled to a second node. The MOS transistor of the second type has a drain coupled to the second node, and a source coupled to a third node having a second voltage lower than the first voltage. The I/O pad is coupled to the second node. The first, second, and third guard rings are positioned around the MOS transistor of the second type.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: November 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Che Tsai, Jam-Wem Lee, Yi-Feng Chang