Patents Examined by Samuel Lair
  • Patent number: 8912601
    Abstract: The present invention discloses a double diffused drain metal oxide semiconductor (DDDMOS) device and a manufacturing method thereof. The DDDMOS device is formed in a substrate, and includes a first well, a gate, a diffusion region, a source, and a drain. A low voltage device is also formed in the substrate, which includes a second well and a lightly doped drain (LDD) region, wherein the first well and the diffusion region are formed by process steps which also form the second well and the LDD region in the low voltage device, respectively.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: December 16, 2014
    Assignee: Richtek Technology Corporation
    Inventors: Tsung-Yi Huang, Chien-Hao Huang
  • Patent number: 8906735
    Abstract: A donor substrate includes a base layer, a light to heat conversion layer on the base layer, an interlayer on the light to heat conversion layer, a low molecular weight transfer layer on the interlayer and an organic transfer layer on the low molecular weight transfer layer. The low molecular weight transfer layer includes an element in Group I or a compound of elements in Group I and Group VII.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: December 9, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Ha-Jin Song, Sang-Woo Pyo, Byeong-Wook Yoo, Hyo-Yeon Kim, Ji-Young Kwon, Kwan-Hee Lee
  • Patent number: 8895958
    Abstract: Disclosed is a light emitting element, which emits light with small power consumption and high luminance. The light emitting element has: a IV semiconductor substrate; two or more core multi-shell nanowires disposed on the IV semiconductor substrate; a first electrode connected to the IV semiconductor substrate; and a second electrode, which covers the side surfaces of the core multi-shell nanowires, and which is connected to the side surfaces of the core multi-shell nanowires. Each of the core multi-shell nanowires has: a center nanowire composed of a first conductivity type III-V compound semiconductor; a first barrier layer composed of the first conductivity type III-V compound semiconductor; a quantum well layer composed of a III-V compound semiconductor; a second barrier layer composed of a second conductivity type III-V compound semiconductor; and a capping layer composed of a second conductivity type III-V compound semiconductor.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: November 25, 2014
    Assignees: National University Corporation Hokkaido University, Sharp Kabushiki Kaisha
    Inventors: Takashi Fukui, Katsuhiro Tomioka
  • Patent number: 8890293
    Abstract: A guard ring for a through via, and a method of manufacture thereof, is provided. The guard ring comprises one or more rings around a through via, wherein the rings may be, for example, circular, rectangular, octagon, elliptical, square, or the like. The guard ring may be formed from a contact through an inter-layer dielectric layer and interconnect structures (e.g., vias and lines) extending through the inter-metal dielectric layers. The guard ring may contact a well formed in the substrate.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hung Lu, Song-Bor Lee, Ching-Chen Hao
  • Patent number: 8890113
    Abstract: A light-emitting device epitaxially-grown on a GaAs substrate which contains an active region composed of AlxGa1-xAs alloy or of related superlattices of this materials system is disclosed. This active region either includes tensile-strained GaP-rich insertions aimed to increase the forbidden gap of the active region targeting the bright red, orange, yellow, or green spectral ranges, or is confined by regions with GaP-rich insertions aimed to increase the barrier height for electrons in the conduction band preventing the leakage of the nonequilibrium carriers outside of the light-generation region.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: November 18, 2014
    Inventors: Nikolay Ledentsov, James Lott, Vitaly Shchukin
  • Patent number: 8890277
    Abstract: Various embodiments are provided for graphite and/or graphene based semiconductor devices. In one embodiment, a semiconductor device includes a semiconductor layer and a semimetal stack. In another embodiment, the semiconductor device includes a semiconductor layer and a zero gap semiconductor layer. The semimetal stack/zero gap semiconductor layer is formed on the semiconductor layer, which forms a Schottky barrier. In another embodiment, a semiconductor device includes first and second semiconductor layers and a semimetal stack. In another embodiment, a semiconductor device includes first and second semiconductor layers and a zero gap semiconductor layer. The first semiconductor layer includes a first semiconducting material and the second semi conductor layer includes a second semiconducting material formed on the first semiconductor layer. The semimetal stack/zero gap semiconductor layer is formed on the second semiconductor layer, which forms a Schottky barrier.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: November 18, 2014
    Assignee: University of Florida Research Foundation Inc.
    Inventors: Arthur Foster Hebard, Sefaattin Tongay
  • Patent number: 8890151
    Abstract: An organic light-emitting display apparatus having improved durability and image quality may include a substrate; a first electrode formed on the substrate; a first pixel definition layer formed to cover at least one lateral surface of the first electrode; a second pixel definition layer formed so as to be spaced apart from at least an upper surface of the first pixel definition layer; an intermediate layer formed on the first electrode and including an organic light-emitting layer; and a second electrode formed on the intermediate layer.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: November 18, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Sang-Min Hong
  • Patent number: 8884286
    Abstract: A switching element includes an active pattern including a channel portion, a source portion connected to the channel portion, and a drain portion connected to the channel portion, the source portion, a gate electrode overlapping the channel portion of the active pattern, a gate insulation layer disposed between the channel portion of the active pattern and the gate electrode, a source electrode disposed on the source portion of the active pattern to make ohmic contact with the source portion, and a drain electrode disposed on the drain portion of the active pattern to make ohmic contact with the drain portion. The drain portion and the channel portion of the active pattern include the same or substantially the same material.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 11, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yong-Su Lee, Su-Hyoung Kang, Yoon-Ho Khang, Hyun-Jae Na, Sang-Ho Park, Se-Hwan Yu, Myoung-Geun Cha
  • Patent number: 8878176
    Abstract: A thin-film transistor with a fluorinated channel and fluorinated source and drain regions and methods of fabrication are provided. The thin-film transistor includes: a substrate; a semiconductor active layer of fluorine-doped metal-oxide formed on the substrate; fluorine-doped source and drain regions disposed adjacent to the semiconductor active layer; a gate electrode disposed over the semiconductor active layer, configured to induce a continuous conduction channel between the source and drain regions; and a gate dielectric material separating the gate electrode and the channel.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: November 4, 2014
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Man Wong, Hoi Sing Kwok, Zhi Ye
  • Patent number: 8865532
    Abstract: A method for manufacturing an active device array substrate includes providing a flexible substrate having a transistor region and a transparent region; forming a gate electrode on the transistor region; sequentially forming a dielectric layer and a semiconductor layer to cover the gate electrode and the flexible substrate; removing a part of the semiconductor layer to form a channel layer above the gate electrode and removing a thickness of the dielectric layer disposed on the transparent region, such that a portion of the dielectric layer on the gate electrode has a first thickness, and another portion of the dielectric layer on the transparent region has a second thickness less than the first thickness; respectively forming a source electrode and a drain electrode on opposite sides of the channel layer; and forming a pixel electrode electrically connected to the drain electrode.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: October 21, 2014
    Assignee: AU Optronics Corporation
    Inventors: Jia-Hong Ye, Ssu-Hui Lu, Wu-Hsiung Lin, Chao-Chien Chiu, Ming-Hsien Lee, Chia-Tien Peng, Wei-Ming Huang
  • Patent number: 8859316
    Abstract: A Schottky junction silicon nanowire field-effect biosensor/molecule detector with a nanowire thickness of 10 nanometer or less and an aligned source/drain workfunction for increased sensitivity. The nanowire channel is coated with a surface treatment to which a molecule of interest absorbs, which modulates the conductivity of the channel between the Schottky junctions sufficiently to qualitatively and quantitatively measure the presence and amount of the molecule.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Christian Lavoie, Christine Ouyang Qiqing, Yanning Sun, Zhen Zhang
  • Patent number: 8853780
    Abstract: A device includes a semiconductor substrate, source and drain regions in the semiconductor substrate, a channel region in the semiconductor substrate between the source and drain regions through which charge carriers flow during operation from the source region to the drain region, and a drift region in the semiconductor substrate, on which the drain region is disposed, and through which the charge carriers drift under an electric field arising from application of a bias voltage between the source and drain regions. A PN junction along the drift region includes a first section at the drain region and a second section not at the drain region. The drift region has a lateral profile that varies such that the first section of the PN junction is shallower than the second section of the PN junction.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: October 7, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Daniel J. Blomberg, Xu Cheng, Xin Lin, Won Gi Min, Zhihong Zhang, Jiang-Kai Zuo
  • Patent number: 8847315
    Abstract: A complementary metal-oxide-semiconductor (CMOS) device and methods of formation thereof are disclosed. In a particular embodiment, a CMOS device includes a silicon substrate, a dielectric insulator material on the silicon substrate, and an extension layer on the dielectric insulator material. The CMOS device further includes a gate in contact with a channel and in contact with an extension region. The CMOS device also includes a source in contact with the extension region and a drain in contact with the extension region. The extension region includes a first region in contact with the source and the gate and includes a second region in contact with the drain and the gate.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: September 30, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Bin Yang, Xia Li, Jun Yuan
  • Patent number: 8841666
    Abstract: In an aspect, a display device including: a substrate; a thin film transistor formed on the substrate, and comprising an active layer formed of an oxide semiconductor; a passivation layer formed on the thin film transistor; and a hydrogen blocking layer positioned between the active layer and the passivation layer is provided.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: September 23, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jeong-Hwan Kim, Kyung-Hye Kim, Joo-Sun Yoon
  • Patent number: 8841722
    Abstract: A semiconductor device includes a semiconductor substrate having a first groove. The first groove has a bottom and first and second side surfaces opposite to each other. A first gate insulator extends alongside the first side surface. A first gate electrode is formed in the first groove and on the first gate insulator. A second gate insulator extends alongside the second side surface. A second gate electrode is formed in the first groove and on the second gate insulator. The second gate electrode is separate from the first gate electrode.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: September 23, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Masayoshi Sammi
  • Patent number: 8841664
    Abstract: Provided is a highly reliable semiconductor device by giving stable electric characteristics to a transistor in which a semiconductor film whose threshold voltage is difficult to control is used as an active layer. By using a silicon oxide film having a negative fixed charge as a film in contact with the active layer of the transistor or a film in the vicinity of the active layer, a negative electric field is always applied to the active layer due to the negative fixed charge and the threshold voltage of the transistor can be shifted in the positive direction. Thus, the highly reliable semiconductor device can be manufactured by giving stable electric characteristics to the transistor.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: September 23, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hitomi Sato, Takayuki Saito, Kosei Noda, Toru Takayama
  • Patent number: 8835898
    Abstract: A memory array including a plurality of memory cells. Each word line is electrically coupled to a set of memory cells, a gate contact and a pair of dielectric pillars positioned parallel to the word line with a spacer of electrically insulating material surrounding the gate contact. Also a method to prevent a gate contact from electrically connecting to a source contact for a plurality of memory cells on a substrate. The method includes depositing and etching gate material to partially fill a space between the pillars and to form a word line for the memory cells, etching a gate contact region for the word line between the pair of pillars, forming a spacer of electrically insulating material in the gate contact region, and depositing a gate contact between the pair of pillars to be in electrical contact with the gate material such that the spacer surrounds the gate contact.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Chung H. Lam, Gen P. Lauer
  • Patent number: 8829548
    Abstract: A light emitting device package includes: an undoped semiconductor substrate having first and second surfaces opposed to each other; first and second conductive vias penetrating the undoped semiconductor substrate; a light emitting device mounted on one region of the first surface; a bi-directional Zener diode formed by doping an impurity on the second surface of the undoped semiconductor substrate and having a Zener breakdown voltage in both directions; and first and second external electrodes formed on the second surface of the undoped semiconductor substrate such that they connect the first and second conductive vias to both ends of the bi-directional Zener diode region, respectively.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: September 9, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong In Yang, Sung Tae Kim, Yong Il Kim, Su Yeol Lee, Seung Wan Chae, Hyung Duk Ko, Yung Ho Ryu
  • Patent number: 8828848
    Abstract: A die having a ledge along a sidewall, and a method of forming the die, is provided. A method of packaging the die is also provided. A substrate, such as a processed wafer, is diced by forming a first notch having a first width, and then forming a second notch within the first notch such that the second notch has a second width less than the first width. The second notch extends through the substrate, thereby dicing the substrate. The difference in widths between the first width and the second width results in a ledge along the sidewalls of the dice. The dice may be placed on a substrate, e.g., an interposer, and underfill placed between the dice and the substrate. The ledge prevents or reduces the distance the underfill is drawn up between adjacent dice. A molding compound may be formed over the substrate.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Ying-Da Wang, Li-Chung Kuo, Szu Wei Lu
  • Patent number: 8823096
    Abstract: A device includes a semiconductor region in a semiconductor chip, a gate dielectric layer over the semiconductor region, and a gate electrode over the gate dielectric. A drain region is disposed at a top surface of the semiconductor region and adjacent to the gate electrode. A gate spacer is on a sidewall of the gate electrode. A dielectric layer is disposed over the gate electrode and the gate spacer. A conductive field plate is over the dielectric layer, wherein the conductive field plate has a portion on a drain side of the gate electrode. A deep metal via is disposed in the semiconductor region. A source electrode is underlying the semiconductor region, wherein the source electrode is electrically shorted to the conductive field plate through the deep metal via.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: September 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Chih Su, Hsueh-Liang Chou, Ruey-Hsin Liu, Chun-Wai Ng