Patents Examined by Stefanie S. Wittenberg
  • Patent number: 10900137
    Abstract: A continuous or semi-continuous process for fabricating nanowires or microwires makes use of the substantially planar template that may be moved through electrochemical solution to grow nanowires or microwires on exposed conductive edges on the surface of that template. The planar template allows fabrication of the template using standard equipment and techniques. Adhesive transfer may be used to remove the wires from the template and in one embodiment to draw a continuous wire from the template to be wound around the drum.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: January 26, 2021
    Assignee: UChicago Argonne, LLC
    Inventors: Anirudha V. Sumant, Michael Zach, Alan David Marten
  • Patent number: 10895015
    Abstract: A thin-walled metal part, and a method to fabricate such a part out of various alloys. A plurality of layers are formed, each of the layers being formed on a polymer template or on a previously formed layer. A homogenizing heat treatment is used to cause chemical elements in the layers to interdiffuse, to form a single continuous layer with a substantially uniform alloy composition.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: January 19, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Tobias A. Schaedler, John H. Martin
  • Patent number: 10889911
    Abstract: The present invention improves the hydrophilicity of a substrate surface, and suppresses variation in the degree of hydrophilicity with each substrate. A plating apparatus is provided that performs a plating process on a substrate having a resist pattern. This plating apparatus includes a pretreatment bath that performs hydrophilic treatment by bringing a pretreatment liquid into contact with a surface to be plated of the substrate, and a plating bath that performs a plating process on a substrate that has undergone the hydrophilic treatment. The pretreatment bath includes a pretreatment liquid supplying device that supplies the pretreatment liquid into the pretreatment bath, and an ultraviolet light irradiation device that irradiates ultraviolet light onto the surface to be plated of the substrate.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: January 12, 2021
    Assignee: EBARA CORPORATION
    Inventors: Masashi Shimoyama, Takashi Kishi
  • Patent number: 10889909
    Abstract: A method for producing a galvanically decorated component with a symbol or structure of a transilluminatable design incorporated in the surface produces the component from an electroplatable plastic in an injection-molding process, and the symbol or structure is produced from a non-electroplatable, electroplating-resistant printed image. The printed image is transferred from a carrier onto the component using thermal transfer by being activated using a laser. A galvanically decorated component is produced by the method.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: January 12, 2021
    Assignee: Gerhardi Kunststofftechnik GmbH
    Inventors: Dirk Kieslich, Binfeng Hu
  • Patent number: 10883185
    Abstract: The present invention relates to an electrolyte composition for depositing copper on a conductive surface. The composition contains a combination of 2,2?-bipyridine, imidazole, tetra-ethyl-ammonium, and a complexing agent for copper. This electrolyte makes it possible to manufacture small size copper interconnects without any void and with a filling speed that is compatible with industrial constrain. The invention also concerns a process for filling cavities with copper, and a semiconductor device that is obtained according to this process.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: January 5, 2021
    Assignee: aveni
    Inventors: Laurianne Religieux, Vincent Mevellec, Mikailou Thiam
  • Patent number: 10882129
    Abstract: Provided is an electrochemical machine. More particularly, provided is an electrochemical machine which removes an electrolytic product generated while electrochemical machining (ECM) so as to improve the quality of ECM and allows micro ECM.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: January 5, 2021
    Assignee: ANYCASTING CO., LTD.
    Inventors: Sung Bin Kim, Kun Woong Ko
  • Patent number: 10879629
    Abstract: A method of electroplating a metal into a recessed feature is provided, which includes: contacting a surface of the recessed feature with an electroplating solution comprising metal ions, an accelerator additive, a suppressor additive and a leveler additive, in which the recessed feature has at least two elongated regions and a cross region laterally between the two elongated regions, and a molar concentration ratio of the accelerator additive:the suppressor additive:the leveler additive is (8-15):(1.5-3):(0.5-2); and electroplating the metal to form an electroplating layer in the recessed feature. An electroplating layer in a recessed feature is also provided.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Jun-Nan Nian, Jyun-Ru Wu, Shiu-Ko Jangjian, Yu-Ren Peng, Chi-Cheng Hung, Yu-Sheng Wang
  • Patent number: 10865492
    Abstract: A plating method for plating a substrate having resist opening portions is provided. The plating method includes a resist residue removing step of removing resist residues in the resist opening portions of the substrate by spraying first process liquid to a surface of the substrate on which the resist opening portions are formed, a liquid filling step of soaking the substrate passed through the removing step in second process liquid to fill the resist opening portions of the substrate with the second process liquid, and a plating step of plating the substrate passed through the liquid filling step.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: December 15, 2020
    Assignee: EBARA CORPORATION
    Inventors: Jumpei Fujikata, Masashi Shimoyama, Ryu Miyamoto, Kentaro Ishimoto
  • Patent number: 10851468
    Abstract: A substrate processing apparatus includes a holding device that includes a conductive member and holds a substrate, a conduction path structure that includes a conductive material and positioned such that the conduction path structure is in contact with the holding device, a supply device that supplies a processing liquid to the substrate held by the holding device, and a grounding structure including a variable resistance device that changes a resistance such that the grounding structure has a first end portion connected the conduction path structure and a second end portion connected to a ground potential.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: December 1, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Tadashi Iino, Toru Ihara, Yoshihiro Kai, Yoichi Tokunaga
  • Patent number: 10856424
    Abstract: A method that includes electroplating both sides of a core and the through hole of a core with a conductive material to cover both sides of the core with the conductive material and to form a conductive bridge in the through hole, wherein the core has a thickness greater than 200 microns; etching the conductive material that covers both sides of the core to reduce the thickness of the conductive material to about 1 micron; applying a film resist to the core; exposing and developing the resist film to form patterns on the conductive material on both sides of the core; and electroplating additional conductive material on the (i) conductive material on both sides of the core (ii) conductive material within the through hole; and (iii) conductive bridge to fill the through hole with conductive material without any voids and to form conductive patterns on both sides of the core.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: December 1, 2020
    Assignee: Intel Corporation
    Inventors: Sri Ranga Sai Boyapati, Amanda E. Schuckman, Sashi S. Kandanur, Srinivas Pietambaram, Mark Hlad, Kristof Darmawikarta
  • Patent number: 10801123
    Abstract: A method of coating a metal article is disclosed that includes immersing a metal article having an exterior anodized layer in a bath containing a chemically active corrosion inhibitor, and applying a voltage to the article during the immersing, the voltage driving the chemically active corrosion inhibitor from the bath into the exterior anodized layer. An article is also disclosed that has a substrate comprising a metal, and a porous anodized layer formed on an exterior surface of the substrate that is infiltrated with a chemically active corrosion inhibitor, the anodized layer having an inward-facing region and an outward-facing region, the anodized layer having a greater concentration of chemically active corrosion inhibitors in the inward-facing region than in the outward-facing region.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: October 13, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Zhongfen Ding, Robert R. Hebert, Weilong Zhang, Bart Antonie van Hassel, Mark R. Jaworowski, Michael A. Kryzman, Blair A. Smith, Georgios S. Zafiris, Promila Bhaatia, Mark A. Brege, Shaahin Amini, Vijay V. Pujar
  • Patent number: 10775416
    Abstract: A method for producing a contact spacing converter space transformer) which has electrical contacts that form electrical paths and in which a first contact spacing of the contacts is converted into a comparatively different, second contact spacing of the electrical contacts including producing at least one base part from each of at least some of the electrical contacts. At least a section of the base part is produced from plastic. The method subsequently includes metallization of at least the section of the base part that is produced from plastic.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: September 15, 2020
    Assignee: FEINMETALL GMBH
    Inventors: Christian König, Jörg Burgold, Gunther Böhm, Wolfgang Schäfer
  • Patent number: 10767275
    Abstract: The present invention relates to bisurea derivatives and their use in aqueous plating baths for copper and copper alloy deposition in the manufacture of printed circuit boards, IC substrates, semiconducting and glass devices for electronic applications. The plating bath according to the present invention comprises at least one source of copper ions and a bisurea derivative. The plating bath is particularly useful for filling recessed structures with copper and build-up of pillar bump structures.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: September 8, 2020
    Assignee: Atotech Deutschland GmbH
    Inventors: Heiko Brunner, Lars Kohlmann, Agnieszka Witczak, Olivier Mann
  • Patent number: 10758144
    Abstract: An electrode for cardiac signal sensing includes an intermediate layer, an iridium-containing layer, an iridium oxide layer, an insulating polymer layer, and a conductive layer formed on a flexible polymer substrate. The intermediate metal layer has a first portion and a second portion, and is formed on the conductive layer. The iridium-containing layer includes at least 50 wt. % iridium and has a first portion and a second portion, and is formed on the first portion of the intermediate metal layer. The iridium oxide layer is formed on the first portion of the iridium-containing layer. The insulating polymer layer is formed on the second portion of the intermediate metal layer and the second portion of the iridium-containing layer. The iridium-containing layer is not formed on the second portion of the intermediate metal layer; and the iridium oxide layer is not formed on the second portion of the iridium-containing layer.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: September 1, 2020
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Gregory Sallee, Kenneth L. Gunter, Danielle Frankson, Patrick A. Merriam, Edward J. Maierhofer, Matthew P. Jones
  • Patent number: 10760173
    Abstract: Method and plant for continuous chrome plating of metal bars, tubular elements and similar, wherein the bar to be chromed is made move forward fastly in a device of chrome plating without of tank of chrome plating including a plurality of anodic cells of chrome plating with tubular-torx shape, into which an electrolytic solution flows with high density of current, for forming on the bar a multi-layer chromium plating while the bar moves forward through the anodes-cells themselves, and wherein the device is characterized in feeding the electrolytic solution with a flow axially distributed and with a circulation of the electrolyte in a turbulent flow, controlled through the anode of chrome plating, said plant including furthermore many cooling stations of the bar by a jet of liquid with cryoscopic thermal step, the sealing of the bath is guaranteed by gaskets in plastic material which are reinforced by armonic steel springs.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: September 1, 2020
    Assignee: Acrom S.A.
    Inventor: Giorgio Angelini
  • Patent number: 10753007
    Abstract: The present invention deals with a process for deposition of indium or indium alloys and an article obtained by the process, wherein the process includes the steps i. providing a substrate having at least one metal or metal alloy surface; ii. depositing a first indium or indium alloy layer on at least one portion of said surface whereby a composed phase layer is formed of a part of the metal or metal alloy surface and a part of the first indium or indium alloy layer; iii. removing partially or wholly the part of the first indium or indium alloy layer which has not been formed into the composed phase layer; iv. depositing a second indium or indium alloy layer on the at least one portion of the surface obtained in step iii.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: August 25, 2020
    Assignee: Atotech Deutschland GmbH
    Inventors: Grigory Vazhenin, Jan Sperling, Stefan Pieper, Mauro Castellani, Andreas Kirbs, Dirk Rohde
  • Patent number: 10722859
    Abstract: To provide a reactor to improve evenness in the thickness of shell metals coated on the surface of core particles by increasing area sizes in the reactor chamber to control electric potentials, the present invention is configured to comprise a top surface able to move up and down while serving as a working electrode, a wall serving as a working electrode, a bottom surface, a standard electrode, a power supplying part and a solution injecting part, wherein the top surface can move up and down automatically by an electric motor or manually. Also, the top surface is configured to be suitable for the interior diameter of the reactor chamber, for solutions inside the reactor chamber not to leak from the top surface or from the crevice between the top surface and the wall of the reactor chamber. The bottom surface of the reactor chamber may comprise an impeller or an ultrasonic wave diffuser to bring about even diffusion in the reactor chamber.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: July 28, 2020
    Assignee: Korea Institute of Energy Research
    Inventors: Gu-Gon Park, Sun-Mi Hwang, Sung-Dae Yim, Chang-Soo Kim, Won-Yong Lee, Tae-Hyun Yang, Seok-Hee Park, Minjin Kim, Young-Jun Sohn, Byungchan Bae, Seung-Gon Kim, Dongwon Shin
  • Patent number: 10711362
    Abstract: An anodic oxide film forming treatment agent for forming an anodic oxide film on a substrate made of aluminum or an aluminum alloy is made of a viscous substance obtained by increasing the viscosity of an electrolytic solution by a nonionic surfactant. A method of forming an anodic oxide film in which the anodic oxide film forming treatment agent is used includes a contacting step of bringing the anodic oxide film forming treatment agent into contact with the substrate, and an energizing step of using the substrate as an anode, and carrying out conduction of electricity between the substrate and a cathode provided in the anodic oxide film forming treatment agent.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: July 14, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Yuki Furukawa
  • Patent number: 10697078
    Abstract: A method of forming Cu plating of the present invention includes: a first step of forming a Cu seed layer on one of surfaces of a substrate such that an average grain size is 50 nm or more and 300 nm or less; a second step of forming an oxide film on a surface of the Cu seed layer in an oxygen atmosphere; a third step of removing a part of the oxide film; and a fourth step of feeding power to the Cu seed layer to form Cu plating on a surface of the oxide film on the Cu seed layer by electrolytic plating.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: June 30, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yuji Sato, Jun Fujita, Motoru Yoshida, Kazuyo Endo
  • Patent number: 10695955
    Abstract: A manufacturing method of a mold, the mold having at its surface a plurality of recessed portions whose two-dimensional size is not less than 10 nm and less than 500 nm when viewed in a direction normal to the surface, the method comprising: (a) providing a mold base (10); (b) partially anodizing the aluminum alloy layer (18), thereby forming a porous alumina layer (14) which has a plurality of minute recessed portions (14p); (c) bringing the porous alumina layer into contact with an etching solution, thereby enlarging the plurality of minute recessed portions; (d) detecting a protrusion (210) formed at a surface of the porous alumina layer or the mold base; (e) determining whether or not a height of the detected protrusion is greater than a predetermined height; and (f) if it is determined at step (e) that the height of the protrusion is greater, irradiating the protrusion with laser light such that the height of the protrusion becomes smaller than the predetermined height.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: June 30, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Nobuaki Yamada, Hidekazu Hayashi, Miho Yamada