Patents by Inventor Anand Murthy

Anand Murthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11521968
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having channel structures with sub-fin dopant diffusion blocking layers are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. The lower fin portion includes a dopant diffusion blocking layer on a first semiconductor layer doped to a first conductivity type. The upper fin portion includes a portion of a second semiconductor layer, the second semiconductor layer on the dopant diffusion blocking layer. An isolation structure is along sidewalls of the lower fin portion. A gate stack is over a top of and along sidewalls of the upper fin portion, the gate stack having a first side opposite a second side. A first source or drain structure at the first side of the gate stack.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: December 6, 2022
    Assignee: Intel Corporation
    Inventors: Cory Bomberger, Anand Murthy, Stephen Cea, Biswajeet Guha, Anupama Bowonder, Tahir Ghani
  • Patent number: 11522048
    Abstract: Gate-all-around integrated circuit structures having source or drain structures with epitaxial nubs, and methods of fabricating gate-all-around integrated circuit structures having source or drain structures with epitaxial nubs, are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires and a second vertical arrangement of horizontal nanowires. A first pair of epitaxial source or drain structures includes vertically discrete portions aligned with the first vertical arrangement of horizontal nanowires. A second pair of epitaxial source or drain structures includes vertically discrete portions aligned with the second vertical arrangement of horizontal nanowires. A conductive contact structure is laterally between and in contact with the one of the first pair of epitaxial source or drain structures and the one of the second pair of epitaxial source or drain structures.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: December 6, 2022
    Assignee: Intel Corporation
    Inventors: Cory Bomberger, Anand Murthy, Mark T. Bohr, Tahir Ghani, Biswajeet Guha
  • Patent number: 11515407
    Abstract: An integrated circuit structure comprises a relaxed buffer stack that includes a channel region, wherein the relaxed buffer stack and the channel region include a group III-N semiconductor material, wherein the relaxed buffer stack comprises a plurality of AlGaN material layers and a buffer stack is located over over the plurality of AlGaN material layers, wherein the buffer stack comprises the group III-N semiconductor material and has a thickness of less than approximately 25 nm. A back barrier is in the relaxed buffer stack between the plurality of AlGaN material layers and the buffer stack, wherein the back barrier comprises an AlGaN material of approximately 2-10% Al. A polarization stack over the relaxed buffer stack.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: November 29, 2022
    Assignee: Intel Corporation
    Inventors: Glenn Glass, Sansaptak Dasgupta, Han Wui Then, Marko Radosavljevic, Paul Fischer, Anand Murthy, Walid Hafez
  • Patent number: 11508577
    Abstract: Embodiments herein describe techniques, systems, and method for a semiconductor device. Embodiments herein may present a semiconductor device including a substrate and an insulator layer above the substrate. A channel area may include an III-V material relaxed grown on the insulator layer. A source area may be above the insulator layer, in contact with the insulator layer, and adjacent to a first end of the channel area. A drain area may be above the insulator layer, in contact with the insulator layer, and adjacent to a second end of the channel area that is opposite to the first end of the channel area. The source area or the drain area may include one or more seed components including a seed material with free surface. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: November 22, 2022
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Matthew Metz, Willy Rachmady, Sean Ma, Nicholas Minutillo, Cheng-Ying Huang, Tahir Ghani, Jack Kavalieros, Anand Murthy, Harold Kennel
  • Patent number: 11482618
    Abstract: Methods of forming a strained channel device utilizing dislocations disposed in source/drain structures are described. Those methods and structures may include forming a thin silicon germanium material in a source/drain opening of a device comprising silicon, wherein multiple dislocations are formed in the silicon germanium material. A source/drain material may be formed on the thin silicon germanium material, wherein the dislocations induce a tensile strain in a channel region of the device.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: October 25, 2022
    Assignee: Daedalus Prime LLC
    Inventors: Michael Jackson, Anand Murthy, Glenn Glass, Saurabh Morarka, Chandra Mohapatra
  • Patent number: 11476334
    Abstract: Techniques and mechanisms for providing functionality of a transistor which comprises a conformal layer of a gate work function silicide. In an embodiment, the transistor comprises a channel region and a gate dielectric which extends and adjoins the channel region. The gate dielectric also adjoins a layer structure of the transistor, the layer structure comprising a silicide. The silicide includes silicon and a component D which comprises a non-metal element from one of Groups IIIa, IVa, or Va. In another embodiment, the silicide further comprises a component M which includes a transition metal element from one of Groups IVb, Vb, VIb, VIIB, or VIIIb and/or which includes a metal element from one of Groups IIIa, IVa, or Va.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: October 18, 2022
    Assignee: Intel Corporation
    Inventors: Orb Acton, Joseph Steigerwald, Anand Murthy, Scott Maddox, Jenny Hu
  • Patent number: 11469299
    Abstract: Gate-all-around integrated circuit structures having underlying dopant-diffusion blocking layers are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires above a fin. The fin includes a dopant diffusion blocking layer on a first semiconductor layer, and a second semiconductor layer on the dopant diffusion blocking layer. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 11, 2022
    Assignee: Intel Corporation
    Inventors: Glenn Glass, Anand Murthy, Biswajeet Guha, Dax Crum, Patrick Keys, Tahir Ghani, Susmita Ghose, Ted Cook, Jr.
  • Patent number: 11450739
    Abstract: A semiconductor structure has a substrate including silicon and a layer of relaxed buffer material on the substrate with a thickness no greater than 300 nm. The buffer material comprises silicon and germanium with a germanium concentration from 20 to 45 atomic percent. A source and a drain are on top of the buffer material. A body extends between the source and drain, where the body is monocrystalline semiconductor material comprising silicon and germanium with a germanium concentration of at least 30 atomic percent. A gate structure is wrapped around the body.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: September 20, 2022
    Assignee: Intel Corporation
    Inventors: Glenn Glass, Anand Murthy, Cory Bomberger, Tahir Ghani, Jack Kavalieros, Siddharth Chouksey, Seung Hoon Sung, Biswajeet Guha, Ashish Agrawal
  • Patent number: 11437472
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having germanium-based channels are described. In an example, an integrated circuit structure includes a fin having a lower silicon portion, an intermediate germanium portion on the lower silicon portion, and a silicon germanium portion on the intermediate germanium portion. An isolation structure is along sidewalls of the lower silicon portion of the fin. A gate stack is over a top of and along sidewalls of an upper portion of the fin and on a top surface of the isolation structure. A first source or drain structure is at a first side of the gate stack. A second source or drain structure is at a second side of the gate stack.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: September 6, 2022
    Assignee: Intel Corporation
    Inventors: Siddharth Chouksey, Glenn Glass, Anand Murthy, Harold Kennel, Jack T. Kavalieros, Tahir Ghani, Ashish Agrawal, Seung Hoon Sung
  • Patent number: 11411110
    Abstract: Methods of forming a strained channel device utilizing dislocations disposed in source/drain structures are described. Those methods and structures may include forming a thin silicon germanium material in a source/drain opening of a device comprising silicon, wherein multiple dislocations are formed in the silicon germanium material. A source/drain material may be formed on the thin silicon germanium material, wherein the dislocations induce a tensile strain in a channel region of the device.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: August 9, 2022
    Assignee: Intel Corporation
    Inventors: Michael Jackson, Anand Murthy, Glenn Glass, Saurabh Morarka, Chandra Mohapatra
  • Publication number: 20220238714
    Abstract: Methods of forming a strained channel device utilizing dislocations disposed in source/drain structures are described. Those methods and structures may include forming a thin silicon germanium material in a source/drain opening of a device comprising silicon, wherein multiple dislocations are formed in the silicon germanium material. A source/drain material may be formed on the thin silicon germanium material, wherein the dislocations induce a tensile strain in a channel region of the device.
    Type: Application
    Filed: April 19, 2022
    Publication date: July 28, 2022
    Inventors: Michael Jackson, Anand Murthy, Glenn Glass, Saurabh Morarka, Chandra Mohapatra
  • Publication number: 20220223519
    Abstract: A device includes a device level having a metallization structure coupled to a semiconductor device and a transistor above the device level. The transistor has a body including a single crystal group III-V or group IV semiconductor material, a source structure on a first portion of the body and a drain structure on a second portion of the body, where the source structure is separate from the drain structure. The transistor further includes a gate structure including a first gate structure portion in a recess in the body and a second gate structure portion between the source structure and the drain structure. A source contact is coupled with the source structure and a drain contact is coupled with the drain structure. The source contact is in contact with the metallization structure in the device level.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Applicant: Intel Corporation
    Inventors: Gilbert Dewey, Ryan Keech, Cory Bomberger, Cheng-Ying Huang, Ashish Agrawal, Willy Rachmady, Anand Murthy
  • Patent number: 11374100
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having source or drain structures with a contact etch stop layer are described. In an example, an integrated circuit structure includes a fin including a semiconductor material, the fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first epitaxial source or drain structure is embedded in the fin at the first side of the gate stack. A second epitaxial source or drain structure is embedded in the fin at the second side of the gate stack, the first and second epitaxial source or drain structures including a lower semiconductor layer, an intermediate semiconductor layer and an upper semiconductor layer.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 28, 2022
    Assignee: Intel Corporation
    Inventors: Cory Bomberger, Rishabh Mehandru, Anupama Bowonder, Biswajeet Guha, Anand Murthy, Tahir Ghani
  • Publication number: 20220199468
    Abstract: An integrated circuit interconnect structure includes a metallization level above a first device level. The metallization level includes an interconnect structure coupled to the device structure, a conductive cap including an alloy of a metal of the interconnect structure and either silicon or germanium on an uppermost surface of the interconnect structure. A second device level above the conductive cap includes a transistor coupled with the conductive cap. The transistor includes a channel layer including a semiconductor material, where at least one sidewall of the conductive cap is co-planar with a sidewall of the channel layer. The transistor further includes a gate on a first portion of the channel layer, where the gate is between a source region and a drain region, where one of the source or the drain region is in contact with the conductive cap.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Kimin Jun, Souvik Ghosh, Willy Rachmady, Ashish Agrawal, Siddharth Chouksey, Jessica Torres, Jack Kavalieros, Matthew Metz, Ryan Keech, Koustav Ganguly, Anand Murthy
  • Publication number: 20220199402
    Abstract: High-purity Ge channeled N-type transistors include a Si-based barrier material separating the channel from a Ge source and drain that is heavily doped with an N-type impurity. The barrier material may have nanometer thickness and may also be doped with N-type impurities. Because of the Si content, N-type impurities have lower diffusivity within the barrier material and can be prevented from entering high-purity Ge channel material. In addition to Si, a barrier material may also include C. With the barrier material, an N-type transistor may display higher channel mobility and reduced short-channel effects.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Koustav Ganguly, Ryan Keech, Harold Kennel, Willy Rachmady, Ashish Agrawal, Glenn Glass, Anand Murthy, Jack Kavalieros
  • Patent number: 11328988
    Abstract: A device includes a device level having a metallization structure coupled to a semiconductor device and a transistor above the device level. The transistor has a body including a single crystal group III-V or group IV semiconductor material, a source structure on a first portion of the body and a drain structure on a second portion of the body, where the source structure is separate from the drain structure. The transistor further includes a gate structure including a first gate structure portion in a recess in the body and a second gate structure portion between the source structure and the drain structure. A source contact is coupled with the source structure and a drain contact is coupled with the drain structure. The source contact is in contact with the metallization structure in the device level.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: May 10, 2022
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Ryan Keech, Cory Bomberger, Cheng-Ying Huang, Ashish Agrawal, Willy Rachmady, Anand Murthy
  • Publication number: 20220140076
    Abstract: Embodiments herein describe techniques, systems, and method for a semiconductor device. Embodiments herein may present a semiconductor device having a channel area including a channel III-V material, and a source area including a first portion and a second portion of the source area. The first portion of the source area includes a first III-V material, and the second portion of the source area includes a second III-V material. The channel III-V material, the first III-V material and the second III-V material may have a same lattice constant. Moreover, the first III-V material has a first bandgap, and the second III-V material has a second bandgap, the channel III-V material has a channel III-V material bandgap, where the channel material bandgap, the second bandgap, and the first bandgap form a monotonic sequence of bandgaps. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: January 14, 2022
    Publication date: May 5, 2022
    Inventors: Cheng-Ying HUANG, Tahir GHANI, Jack KAVALIEROS, Anand MURTHY, Harold KENNEL, Gilbert DEWEY, Matthew METZ, Willy RACHMADY, Sean MA, Nicholas MINUTILLO
  • Publication number: 20220093586
    Abstract: A monolithic three-dimensional integrated circuit may include multiple transistor levels separated by one or more levels of metallization. An upper level transistor structure may include a monocrystalline channel material over a bottom gate stack. The channel material and the gate stack materials may be formed on a donor substrate at any suitable temperature, and subsequently transferred from the donor substrate to a host substrate that includes lower-level circuitry. The upper-level transistor may be patterned from the transferred layers so that the gate electrode includes one or more bonding layers. Source and drain material may be patterned from a source and drain material layer that was transferred from the donor substrate along with the channel material, or source and drain material may be grown at low temperatures from the transferred channel material.
    Type: Application
    Filed: December 1, 2021
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Gilbert Dewey, Ashish Agrawal, Kimin Jun, Willy Rachmady, Zachary Geiger, Cory Bomberger, Ryan Keech, Koustav Ganguly, Anand Murthy, Jack Kavalieros
  • Patent number: 11276694
    Abstract: An integrated circuit with at least one transistor is formed using a buffer structure on the substrate. The buffer structure includes one or more layers of buffer material and comprises indium, gallium, and phosphorous. A ratio of indium to gallium in the buffer structure increases from a lower value to a higher value such that the buffer structure has small changes in lattice constant to control relaxation and defects. A source and a drain are on top of the buffer structure and a body of Group III-V semiconductor material extends between and connects the source and the drain. A gate structure wrapped around the body, the gate structure including a gate electrode and a gate dielectric, wherein the gate dielectric is between the body and the gate electrode.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: March 15, 2022
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Matthew Metz, Gilbert Dewey, Nicholas Minutillo, Cheng-Ying Huang, Jack Kavalieros, Anand Murthy, Tahir Ghani
  • Patent number: 11264501
    Abstract: Techniques and mechanisms for imposing stress on a channel region of an NMOS transistor. In an embodiment, a fin structure on a semiconductor substrate includes two source or drain regions of the transistor, wherein a channel region of the transistor is located between the source or drain regions. At least on such source or drain region includes a doped silicon germanium (SiGe) compound, wherein dislocations in the SiGe compound result in the at least one source or drain region exerting a tensile stress on the channel region. In another embodiment, source or drain regions of a transistor each include a SiGe compound which comprises at least 50 wt % germanium.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 1, 2022
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Anand Murthy, Karthik Jambunathan, Cory Bomberger