Patents by Inventor Mutsumi Masumoto

Mutsumi Masumoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090087946
    Abstract: A semiconductor device (100) has one or more semiconductor chips (110) with active and passive surfaces, wherein the active surfaces include contact pads. The device further has a plurality of metal segments (111) separated from the chip by gaps (120); the segments have first and second surfaces, wherein the second surfaces (111b) are coplanar (130) with the passive chip surface (101b). Conductive connectors span from the chip contact pads to the respective first segment surface. Polymeric encapsulation compound (150) covers the active chip surface, the connectors, and the first segment surfaces, and are filling the gaps so that the compound forms surfaces coplanar (130) with the passive chip surface and the second segment surfaces. In this structure, the device thickness may be only about 250 ?m. Reflow metals may be on the passive chip surface and the second segment surfaces.
    Type: Application
    Filed: December 10, 2008
    Publication date: April 2, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Mutsumi Masumoto
  • Publication number: 20090017582
    Abstract: This invention includes a method for manufacturing a semiconductor device by which implementation of a finer pitch for a semiconductor chip can be handled, and the creation of voids inside an under-filling resin can be reduced in order to realize highly reliable flip-chip mounting. It involves a step in which multiple electrodes arranged two-dimensionally on one side of a semiconductor chip are connected to corresponding conductive regions on a substrate; a step in which an under-filling resin is injected between the one surface of the semiconductor chip and the substrate; and a step in which the under-filling resin is melted at a temperature higher than its glass transition temperature while under a prescribed pressure and cured.
    Type: Application
    Filed: July 7, 2008
    Publication date: January 15, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: MUTSUMI MASUMOTO
  • Publication number: 20090011538
    Abstract: A mounting system is provided with a substrate loader section, a chip mounting section, and a substrate unloader section for sequentially taking out substrates whereupon chips are mounted. The mounting system is characterized in that the substrate loader section is provided with an oven capable of heat insulating a substrate together with a substrate magazine capable of containing a plurality of substrates, a stage heater for heating/heat insulating a substrate is provided, respectively, at a substrate conveying portion from a substrate waiting stage for the chip mounting section to the chip mounting section, at the chip mounting section, and at a substrate conveying portion from the chip mounting section to the substrate unloader section, and the substrate unloader section is provided with an oven capable of heat insulating a substrate together with a substrate magazine capable of containing a plurality of substrates whereupon chips are mounted.
    Type: Application
    Filed: March 13, 2006
    Publication date: January 8, 2009
    Inventors: Mutsumi Masumoto, Katsumi Terada
  • Patent number: 7459339
    Abstract: The objective of the invention is to provide a semiconductor device manufacturing method that can suppress the formation of voids in the underfill resin and realize a highly reliable flip-chip assembly. The semiconductor device manufacturing method pertaining to the present invention comprises the following processing steps: a step of operation in which a plurality of electrodes 24, formed in a two-dimensional array on a principal surface 22 of semiconductor chip 20, are connected to corresponding conductive regions 32, 34 on substrate 30, a step of operation in which underfill resin 40 is supplied between the principal surface of the semiconductor chip and the substrate, and a step of operation in which the semiconductor chip and substrate with supplied underfill resin 40 are exposed to atmospheric pressure.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: December 2, 2008
    Assignee: Texas Instruments Incorporated
    Inventor: Mutsumi Masumoto
  • Publication number: 20080199988
    Abstract: The objective of the present invention is to offer a method for forming a conductive pattern on a substrate and solder protrusions on the conductive pattern. The pitch of the conductive pattern corresponds to the pitch of electrodes on a semiconductor chip.
    Type: Application
    Filed: February 19, 2008
    Publication date: August 21, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Chizuko Ito, Mutsumi Masumoto
  • Publication number: 20070132075
    Abstract: A semiconductor device (100) has one or more semiconductor chips (110) with active and passive surfaces, wherein the active surfaces include contact pads. The device further has a plurality of metal segments (111) separated from the chip by gaps (120); the segments have first and second surfaces, wherein the second surfaces (111b) are coplanar (130) with the passive chip surface (101b). Conductive connectors span from the chip contact pads to the respective first segment surface. Polymeric encapsulation compound (150) covers the active chip surface, the connectors, and the first segment surfaces, and are filling the gaps so that the compound forms surfaces coplanar (130) with the passive chip surface and the second segment surfaces. In this structure, the device thickness may be only about 250 ?m. Reflow metals may be on the passive chip surface and the second segment surfaces.
    Type: Application
    Filed: December 12, 2005
    Publication date: June 14, 2007
    Inventor: Mutsumi Masumoto
  • Publication number: 20070117265
    Abstract: The objective of this invention is to provide a type of semiconductor device enabling highly reliable flip chip connection. Semiconductor chip for flip chip assembly has gold stud bumps on a principal surface having a semiconductor integrated circuit formed on it, and the gold stud bumps contain silver (Ag). It is preferred that the silver content be 17%±2% by weight. The gold stud bumps are connected via solder bumps to Cu electrodes on substrate. Because silver is contained in gold stud bumps, it is possible to suppress the generation of voids and cracks in the joint between gold stud bumps and Cu electrodes.
    Type: Application
    Filed: November 15, 2006
    Publication date: May 24, 2007
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Mutsumi Masumoto
  • Publication number: 20070117264
    Abstract: The objective of the invention is to provide a semiconductor device manufacturing method that can suppress the formation of voids in the underfill resin and realize a highly reliable flip-chip assembly. The semiconductor device manufacturing method pertaining to the present invention comprises the following processing steps: a step of operation in which a plurality of electrodes 24, formed in a two-dimensional array on a principal surface 22 of semiconductor chip 20, are connected to corresponding conductive regions 32, 34 on substrate 30, a step of operation in which underfill resin 40 is supplied between the principal surface of the semiconductor chip and the substrate, and a step of operation in which the semiconductor chip and substrate with supplied underfill resin 40 are exposed to atmospheric pressure.
    Type: Application
    Filed: October 4, 2006
    Publication date: May 24, 2007
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Mutsumi Masumoto
  • Publication number: 20070092991
    Abstract: The objective of the invention is to provide a semiconductor device manufacturing method with which the generation of burrs can be suppressed while increasing the singulation speed of the package. In a manufacturing method of a QFN package of the present invention, a molding prepared by sealing a lead frame with plural semiconductor chips carried on it en bloc with a resin; the operation comprises the following processing steps: a first singulation processing step S101 in which the molding is half-cut along the cutting plane; a de-flashing processing step S102 in which the burrs on the cut portion of the half-cut molding are removed; and a second singulation processing step S103 in which the de-flashed molding is completely cut along the cutting plane.
    Type: Application
    Filed: October 24, 2006
    Publication date: April 26, 2007
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Mutsumi Masumoto
  • Publication number: 20070090160
    Abstract: The objective of this invention is to prevent the generation of defects pertaining to placement of solder balls on the terminal placement parts of the electronic part main body. The solder ball 1 has spherical core 2 and coating layer 3 that covers core 2. The coating layer 3 contains a resin. The diameter of core 2 is in the range of 30-500 ?m. The thickness of coating layer 3 is in the range of 5-100 ?m. The coating layer 3 is melted at temperature in a range of 20° C. between 150 to 300° C., and the viscosity of coating layer 3 is in the range of 0.01-50 Pa-s. After solder balls 1 are set on terminal placement parts 13a in the main body of the electronic part, reflow is performed for solder balls 1. As a result, coating layer 3 is melted first, and core 2 descends under its own weight to come into contact with the terminal placement part. Core 2 is then melted, and core 2 and terminal placement part 13a are soldered and joined to each other.
    Type: Application
    Filed: October 20, 2006
    Publication date: April 26, 2007
    Applicant: Texas Instruments Incorporated
    Inventor: Mutsumi Masumoto
  • Patent number: 7157363
    Abstract: An insulating layer (3) having an opening portion (3a) at a position conformable to an electrode pad (2) is formed. Next, a resin projection portion (4) is formed on the insulating layer (3). Thereafter, a resist film is formed which has opening portions made in regions conformable to the opening portion (3a), the resin projection portion (4) and the region sandwiched therebetween. A Cu plating layer (6) is formed by electrolytic copper plating, using the resist film as a mask.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: January 2, 2007
    Assignees: Fujikura Ltd., Texas Instruments Japan Limited
    Inventors: Takanao Suzuki, Masatoshi Inaba, Tadanori Ominato, Masahiro Kaizu, Akihito Kurosaka, Masatoshi Inaba, Nobuyuki Sadakata, Mutsumi Masumoto, Kenji Masumoto
  • Patent number: 7023088
    Abstract: An insulating layer (3) having an opening portion (3a) at a position conformable to an electrode pad (2) is formed. Next, a resin projection portion (4) is formed on the insulating layer (3). Thereafter, a resist film is formed which has opening portions made in regions conformable to the opening portion (3a), the resin projection portion (4) and the region sandwiched therebetween. A Cu plating layer (6) is formed by electrolytic copper plating, using the resist film as a mask.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: April 4, 2006
    Assignees: Fujikura Ltd., Texas Instruments Japan Limited
    Inventors: Takanao Suzuki, Masatoshi Inaba, Tadanori Ominato, Masahiro Kaizu, Akihito Kurosaka, Masatoshi Inaba, Nobuyuki Sadakata, Mutsumi Masumoto, Kenji Masumoto
  • Patent number: 6969919
    Abstract: A semiconductor package production method containing a step in which a bond layer made of a single-layer film thermoset bond is provided on the back of a wafer on which many semiconductor devices are formed, a dicing tape is pasted onto its bond layer side, and the bond layer and the wafer are diced simultaneously in order to obtain semiconductor devices with the bond layer, and a step in which the semiconductor devices with the bond layer are detached from the dicing tape and die-attached to interposing substrates serving as bodies to which they are bonded; wherein, the aforementioned film thermoset bond contains an epoxy resin, an epoxy resin hardener, and a phenoxy resin as well as 50-80 wt % of spherical silica, and the bond layer is 100 ?m or thicker. A semiconductor device made by this method and a wafer for use with this method.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: November 29, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Kiyoshi Yajima, Mutsumi Masumoto, Chihiro Hatano, Kimitaka Nishio, Noriyuki Kirikae
  • Patent number: 6929971
    Abstract: Improve the productivity and cost for the manufacturing of a semiconductor device referred to as a wafer level CSP. The manufacturing method for a semiconductor device related to this invention contains each of the processes that form a wiring (18) for the purpose of electrically connecting each electrode pad (10a) and external connecting terminals on top of a wafer (10) on which semiconductor elements are formed, connect conductive balls that are preformed by a separate process on top of this, and next, cover the above-mentioned wafer with a resin (32) such that the upper portion of the conductive supporting posts (30) are exposed. In a later process, solder balls (34) are arranged as external connecting terminals on the upper portion of the conductive supporting posts, and in the final process, semiconductor elements are formed by dicing the above-mentioned wafer along the boundary lines of the above-mentioned semiconductor elements.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: August 16, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Kensho Murata, Mutsumi Masumoto, Kenji Masumoto
  • Patent number: 6887778
    Abstract: A semiconductor device and its manufacturing method with which the connection reliability can be improved without complicating the manufacturing process. Semiconductor chip 102 is mounted on the principal surface of insulated substrate 104, and a conductive paste containing a heat-curing epoxy resin is supplied to via holes 116 from the back of insulated substrate 104. Then, solder balls 118 are transferred onto the conductive paste of insulated substrate 104, and reflow soldering is applied in order to bond solder balls 118 to insulated substrate 104. During the reflow soldering, the heat-curing epoxy resin forms resin parts 120 around solder balls 118.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: May 3, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Masako Watanabe, Mutsumi Masumoto
  • Patent number: 6876077
    Abstract: Improve the productivity and cost for the manufacturing of a semiconductor device referred to as a wafer level CSP. The manufacturing method for a semiconductor device related to this invention contains each of the processes that form a wiring (18) for the purpose of electrically connecting each electrode pad (10a) and external connecting terminals on top of a wafer (10) on which semiconductor elements are formed, connect conductive balls that are preformed by a separate process on top of this, and next, cover the above-mentioned wafer with a resin (32) such that the upper portion of the conductive supporting posts (30) are exposed. In a later process, solder balls (34) are arranged as external connecting terminals on the upper portion of the conductive supporting posts, and in the final process, semiconductor elements are formed by dicing the above-mentioned wafer along the boundary lines of the above-mentioned semiconductor elements.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: April 5, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Kensho Murata, Mutsumi Masumoto, Kenji Masumoto
  • Publication number: 20050037539
    Abstract: An insulating layer (3) having an opening portion (3a) at a position conformable to an electrode pad (2) is formed. Next, a resin projection portion (4) is formed on the insulating layer (3). Thereafter, a resist film is formed which has opening portions made in regions conformable to the opening portion (3a), the resin projection portion (4) and the region sandwiched therebetween. A Cu plating layer (6) is formed by electrolytic copper plating, using the resist film as a mask.
    Type: Application
    Filed: September 27, 2004
    Publication date: February 17, 2005
    Applicants: FUJIKURA LTD., TEXAS INSTRUMENTS JAPAN LIMITED
    Inventors: Takanao Suzuki, Masatoshi Inaba, Tadanori Ominato, Masahiro Kaizu, Akihito Kurosaka, Masatoshi Inaba, Nobuyuki Sadakata, Mutsumi Masumoto, Kenji Masumoto
  • Publication number: 20050003577
    Abstract: A semiconductor package production method containing a step in which a bond layer made of a single-layer film thermoset bond is provided on the back of a wafer on which many semiconductor devices are formed, a dicing tape is pasted onto its bond layer side, and the bond layer and the wafer are diced simultaneously in order to obtain semiconductor devices with the bond layer, and a step in which the semiconductor devices with the bond layer are detached from the dicing tape and die-attached to interposing substrates serving as bodies to which they are bonded; wherein, the aforementioned film thermoset bond contains an epoxy resin, an epoxy resin hardener, and a phenoxy resin as well as 50-80 wt % of spherical silica, and the bond layer is 100 ?m or thicker. A semiconductor device made by this method and a wafer for use with this method.
    Type: Application
    Filed: June 10, 2004
    Publication date: January 6, 2005
    Inventors: Kiyoshi Yajima, Mutsumi Masumoto, Chihiro Hatano, Kimitaka Nishio, Noriyuki Kirikae
  • Patent number: 6835595
    Abstract: An insulating layer (3) having an opening portion (3a) at a position conformable to an electrode pad (2) is formed. Next, a resin projection portion (4) is formed on the insulating layer (3). Thereafter, a resist film is formed which has opening portions made in regions conformable to the opening portion (3a), the resin projection portion (4) and the region sandwiched therebetween. A Cu plating layer (6) is formed by electrolytic copper plating, using the resist film as a mask.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: December 28, 2004
    Assignees: Fujikura Ltd., Texas Instruments Japan Limited
    Inventors: Takanao Suzuki, Masatoshi Inaba, Tadanori Ominato, Masahiro Kaizu, Akihito Kurosaka, Masatoshi Inaba, Nobuyuki Sadakata, Mutsumi Masumoto, Kenji Masumoto
  • Patent number: 6830956
    Abstract: A method to realize low-profile semiconductor devices by grinding a resin sealed block and realize level grinding by eliminating warpage of the resin sealed block. Semiconductor devices 10 are produced by step (B) in which multiple semiconductor chips 11 are mounted face down onto the surface of substrate 12, step (C) in which molding resin 13 is injected onto substrate 12 in order to form resin sealed block 18 in which multiple semiconductor chips 11 are sealed, step (E) in which resin sealed block 18 is cut halfway from the side of substrate 12, and step (F) in which resin sealed block 18 is ground from the side of molding resin 13 in order to separate it into individual semiconductor devices 10.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: December 14, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Mutsumi Masumoto, Kenji Masumoto