Patents by Inventor Patrick Fleming

Patrick Fleming has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060193582
    Abstract: A composite polymer fiber comprises a polymer filler material and a plurality of polymer scattering fibers disposed within the filler material. At least one of the filler material and the scattering fibers is formed of a birefringent material. The refractive indices of the filler material and the scattering fibers can be substantially matched for light incident in a first polarization state on the composite polymer fiber and unmatched for light incident in an orthogonal polarization state. The scattering fibers may be arranged to form a photonic crystal within the composite fiber. The composite fibers may be extruded and may be formed into a yarn, a weave or the like. If the filler material is soluble, it may be washed out of the yarn or weave, and the scattering fibers may then be infiltrated with a resin that is subsequently cured.
    Type: Application
    Filed: February 28, 2005
    Publication date: August 31, 2006
    Inventors: Andrew Ouderkirk, Olester Benson, James Breister, Robert Brott, Yeun-Jong Chou, Patrick Fleming, William Kopecky, Diane North, Roger Stumo, Kristin Thunhorst, Bruce Wilson
  • Publication number: 20060193578
    Abstract: An optical element is formed by co-extruding to have an arrangement of polymer scattering fibers within a polymer matrix. The scattering fibers lie substantially parallel to a first axis. The scattering fibers are arranged at positions across the cross-section of the polymer matrix to scatter light transversely incident on the optical element in a direction substantially orthogonal to the first axis. The positions of the scattering fibers across the cross-section of the optical element may be selected so as to form a two-dimensional photonic crystal structure for light transversely incident on the optical element.
    Type: Application
    Filed: February 28, 2005
    Publication date: August 31, 2006
    Inventors: Andrew Ouderkirk, Olester Benson, Patrick Fleming, William Kopecky, Diane North, Kristin Thunhorst
  • Publication number: 20060194487
    Abstract: A polarizer is formed with an arrangement of polymer fibers substantially parallel within a polymer matrix. The polymer fibers are formed of at least first and second polymer materials. At least one of the polymer matrix and the first and second polymer materials is birefringent, and provides a birefringent interface with the adjacent material. Light is reflected and/or scattered at the birefringent interfaces with sensitivity to the polarization of the light. In some embodiments, the polymer fibers are formed as composite fibers, having a plurality of scattering polymer fibers disposed within a filler to form the composite fiber. In other embodiments, the polymer fiber is a multilayered polymer fiber. The polymer fibers may be arranged within the polymer matrix as part of a fiber weave.
    Type: Application
    Filed: February 28, 2005
    Publication date: August 31, 2006
    Inventors: Andrew Ouderkirk, Richard Allen, Olester Benson, James Breister, Yeun-Jong Chou, Patrick Fleming, William Kopecky, Diane North, Roger Stumo, Kristin Thunhorst, Bruce Wilson
  • Publication number: 20060194046
    Abstract: A composite polymer fiber comprises a polymer filler material and a plurality of polymer scattering fibers disposed within the filler material. At least one of the filler material and the scattering fibers is formed of a birefringent material. The refractive indices of the filler material and the scattering fibers can be substantially matched for light incident in a first polarization state on the composite polymer fiber and unmatched for light incident in an orthogonal polarization state. The scattering fibers may be arranged to form a photonic crystal within the composite fiber. The composite fibers may be extruded and may be formed into a yarn, a weave or the like. If the filler material is soluble, it may be washed out of the yarn or weave, and the scattering fibers may then be infiltrated with a resin that is subsequently cured.
    Type: Application
    Filed: February 28, 2005
    Publication date: August 31, 2006
    Inventors: Andrew Ouderkirk, Olester Benson, Robert Brott, Patrick Fleming, Catherine Leatherdale, Terence Neavin, Diane North
  • Publication number: 20060193577
    Abstract: A polarizer is formed with an arrangement of polymer fibers substantially parallel within a polymer matrix. The polymer fibers are formed of at least first and second polymer materials. At least one of the polymer matrix and the first and second polymer materials is birefringent, and provides a birefringent interface with the adjacent material. Light is reflected and/or scattered at the birefringent interfaces with sensitivity to the polarization of the light. In some embodiments, the polymer fibers are formed as composite fibers, having a plurality of scattering polymer fibers disposed within a filler to form the composite fiber. In other embodiments, the polymer fiber is a multilayered polymer fiber. The polymer fibers may be arranged within the polymer matrix as part of a fiber weave.
    Type: Application
    Filed: February 28, 2005
    Publication date: August 31, 2006
    Inventors: Andrew Ouderkirk, Richard Allen, Patrick Fleming, Diane North, Andrew Ruff, Kristin Thunhorst
  • Publication number: 20060193593
    Abstract: An optical element is formed by co-extruding to have an arrangement of polymer scattering fibers within a polymer matrix. The scattering fibers lie substantially parallel to a first axis. The scattering fibers are arranged at positions across the cross-section of the polymer matrix to scatter light transversely incident on the optical element in a direction substantially orthogonal to the first axis. The positions of the scattering fibers across the cross-section of the optical element may be selected so as to form a two-dimensional photonic crystal structure for light transversely incident on the optical element.
    Type: Application
    Filed: February 28, 2005
    Publication date: August 31, 2006
    Inventors: Andrew Ouderkirk, Olester Benson, Robert Brott, Patrick Fleming, Catherine Leatherdale, Terence Neavin, Diane North
  • Publication number: 20060188704
    Abstract: Methods of preparing adhesive-backed articles and methods of applying adhesives backed articles are described. The adhesive-backed articles include a compliant film and a pressure-sensitive adhesive having a microstructured surface opposite the compliant film.
    Type: Application
    Filed: April 25, 2006
    Publication date: August 24, 2006
    Inventors: Haruyuki Mikami, Patrick Fleming, Mieczyslaw Mazurek
  • Publication number: 20060137927
    Abstract: A turbine generator regenerative braking system may be used to slow or stop a rotating shaft or wheel, wherein energy may be recovered as electricity generated by a turbine generator and stored in batteries, ultra-capacitors, or other storage systems. The turbine generator may be fluid-jet powered, the fluid-jet being provided by at least one hydraulic fluid pump linked to the rotating shaft or wheel. A braking actuation system operatively connects/starts the pumping action, and controls may be provided to adjust the flowrate through the fluid-jet nozzle. In some versions of the system, a hydraulic pump, a clutch, and an adjustable-flow nozzle will be dedicated to each ground engaging wheel of the vehicle. In a vehicle, braking is preferably initiated by the driver by actuation of a brake master cylinder that provides hydraulic pressure to cause each hydraulic pump to engage with its corresponding pump. The pressurized fluid output of each pump is then fed to the turbine through the adjustable-flow nozzle.
    Type: Application
    Filed: November 22, 2005
    Publication date: June 29, 2006
    Inventor: Patrick Fleming
  • Publication number: 20060078831
    Abstract: Methods of fabricating optical elements that are encapsulated in monolithic matrices. The present invention is based, at least in one aspect, upon the concept of using multiphoton, multi-step photocuring to fabricate encapsulated optical element(s) within a body of a photopolymerizable composition. Imagewise, multi-photon polymerization techniques are used to form the optical element. The body surrounding the optical element is also photohardened by blanket irradiation and/or thermal curing to help form an encapsulating structure. In addition, the composition also incorporates one or more other, non-diffusing binder components that may be thermosetting or thermoplastic. The end result is an encapsulated structure with good hardness, durability, dimensional stability, resilience, and toughness.
    Type: Application
    Filed: November 18, 2005
    Publication date: April 13, 2006
    Inventors: Robert DeVoe, Catherine Leatherdale, Jeffrey Florczak, Patrick Fleming, John Potts
  • Publication number: 20060057857
    Abstract: In various embodiments, the invention is directed to aperture mask deposition techniques for use in creating integrated circuits or integrated circuit elements. In other embodiments, the invention is directed to different apparatuses that facilitate the deposition techniques. The techniques generally involve sequentially depositing material through a number of aperture masks formed with patterns that define layers or portions of various layers of a circuit. In this manner, circuits can be created using aperture mask deposition techniques, without requiring any etching or photolithography, which is particularly useful when organic semiconductors are involved. The techniques can be useful in creating circuit elements for electronic displays, low-cost integrated circuits such as radio frequency identification (RFID) circuits, and other circuits.
    Type: Application
    Filed: October 25, 2005
    Publication date: March 16, 2006
    Inventors: Patrick Fleming, Michael Haase, Tommie Kelley, Dawn Muyres, Steven Theiss
  • Publication number: 20050284898
    Abstract: This injection molded plastic garment hanger has a body part formed as a horizontal beam having a generally S-shape cross section, a hook at the top and optional spring clamps, hooks and projections on the beam for engaging, holding and supporting garments.
    Type: Application
    Filed: June 24, 2004
    Publication date: December 29, 2005
    Inventor: Patrick Fleming
  • Publication number: 20050284899
    Abstract: An auxiliary garment hanger for adjustably displaying, transporting and storing multiple articles of clothing. The auxiliary garment hanger is a drop loop type garment hanger comprising two parts. A first part is an elongated vertical body having a loop at one end which can be suspended from the hook of a conventional hanger. A second part is a horizontal support having fasteners for attachment to clothing and an integrated latching mechanism which allows the horizontal support to be affixed to the elongated vertical body at varying heights relative to the conventional hanger. The latch can be easily disengaged to permit the horizontal support to be re-adjusted or removed from the elongated body and reattached to another.
    Type: Application
    Filed: June 25, 2004
    Publication date: December 29, 2005
    Inventors: Patrick Fleming, David Deryck
  • Patent number: 6966394
    Abstract: A turbine generator regenerative braking system is for an automotive or other vehicle having ground engaging wheels and an electrical energy storage device. The braking system comprises an hydraulic fluid turbine generator having an electrical power output connected to the electrical energy storage device, a plurality of hydraulic fluid pumps, an actuation system for operatively connecting/starting pumping action, and a hydraulic fluid circuit connecting the hydraulic pumps to the turbine generator. In some versions of the system, a hydraulic pump, a clutch and an adjustable flow nozzle will be dedicated to each ground engaging wheel of the vehicle. In operation, braking is preferably initiated by the actuation of a brake master cylinder which provides hydraulic pressure to cause each rotating wheel with its corresponding hydraulic pump to engage. The pressurized fluid output of each pump is then fed to the turbine through the adjustable-flow nozzle causing the flywheel, and thus the generator, to rotate.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: November 22, 2005
    Inventor: Patrick Fleming
  • Publication number: 20050208431
    Abstract: Methods of fabricating optical elements that are encapsulated in monolithic matrices. The present invention is based, at least in one aspect, upon the concept of using multiphoton, multi-step photocuring to fabricate encapsulated optical element(s) within a body of a photopolymerizable composition. Imagewise, multi-photon polymerization techniques are used to form the optical element. The body surrounding the optical element is also photohardened by blanket irradiation and/or thermal curing to help form an encapsulating structure. In addition, the composition also incorporates one or more other, non-diffusing binder components that may be thermosetting or thermoplastic. The end result is an encapsulated structure with good hardness, durability, dimensional stability, resilience, and toughness.
    Type: Application
    Filed: June 14, 2001
    Publication date: September 22, 2005
    Inventors: Robert Devoe, Catherine Leatherdale, Patrick Fleming, John Potts, Jeffrey Florczak
  • Publication number: 20050191572
    Abstract: Aperture masks and deposition techniques for using aperture masks are described. In addition, techniques for creating aperture masks and other techniques for using the aperture masks are described. The various techniques can be particularly useful in creating circuit elements for electronic displays and low-cost integrated circuits such as radio frequency identification (RFID) circuits. In addition, the techniques can be advantageous in the fabrication of integrated circuits incorporating organic semiconductors, which typically are not compatible with wet processes.
    Type: Application
    Filed: April 29, 2005
    Publication date: September 1, 2005
    Inventors: Paul Baude, Patrick Fleming, Michael Haase, Tommie Kelley, Dawn Muyres, Steven Theiss
  • Publication number: 20050187521
    Abstract: Microneedle devices and methods of manufacturing the microneedle devices. The microneedle devices include microneedles protruding from a substrate, with the microneedles piercing a cover placed over the substrate surface from which the microneedles protrude. The cover and the microneedle substrate together define a capillary volume in fluid communication with the base of each microneedle. One manner of using microneedle arrays of the present invention is in methods involving the penetration of skin to deliver medicaments or other substances and/or extract blood or tissue. Manufacturing methods may include simultaneous application of pressure and ultrasonic energy when piercing the cover with the microneedles.
    Type: Application
    Filed: April 21, 2005
    Publication date: August 25, 2005
    Inventors: Patrick Fleming, Michael Delmore, Luther Erickson, Richard Ferber
  • Publication number: 20050143713
    Abstract: Microneedle arrays, methods of manufacturing microneedles and methods of using microneedle arrays. The microneedles in the microneedle arrays may be in the form of tapered structures that include at least one channel formed in the outside surface of each microneedle. The microneedles may have bases that are elongated in one direction. The channels in microneedles with elongated bases may extend from one of the ends of the elongated bases towards the tips of the microneedles. The channels formed along the sides of the microneedles may optionally be terminated short of the tips of the microneedles. The microneedle arrays may also include conduit structures formed on the surface of the substrate on which the microneedle array is located. The channels in the microneedles may be in fluid communication with the conduit structures. One manner of using microneedle arrays of the present invention is in methods involving the penetration of skin to deliver medicaments or other substances and/or extract blood or tissue.
    Type: Application
    Filed: March 3, 2005
    Publication date: June 30, 2005
    Inventors: Michael Delmore, Patrick Fleming, Douglas Huntley, Jamieson Keister, Cristina Thomas, Richard Ferber
  • Publication number: 20050053747
    Abstract: A pressure sensitive adhesive layer with a structured surface, wherein the adhesive layer is capable of being dry laminated to a substrate to form a laminate. The adhesive layer has a haze after lamination, measured according to ASTM D 1003-95, of less than about 50% of the haze of the adhesive layer before lamination. After dry lamination, the adhesive layer has a luminous transmittance of more than about 85%, a haze of less than about 25%, and an opacity of less than about 3%.
    Type: Application
    Filed: September 15, 2004
    Publication date: March 10, 2005
    Inventors: Jie Yang, Mieczyslaw Mazurek, Patrick Fleming, Larry Meixner, Haruyuki Mikami
  • Publication number: 20050042365
    Abstract: In one embodiment, the invention is directed to aperture mask deposition techniques using aperture mask patterns formed in one or more elongated webs of flexible film. The techniques involve sequentially depositing material through mask patterns formed in the film to define layers, or portions of layers, of the circuit. A deposition substrate can also be formed from an elongated web, and the deposition substrate web can be fed through a series of deposition stations. Each deposition station may have an elongated web formed with aperture mask patterns. The elongated web of mask patterns feeds in a direction perpendicular to the deposition substrate web. In this manner, the circuit creation process can be performed in-line. Moreover, the process can be automated to reduce human error and increase throughput.
    Type: Application
    Filed: September 14, 2004
    Publication date: February 24, 2005
    Inventors: Paul Baude, Patrick Fleming, Michael Haase, Tommie Kelley, Dawn Muyres, Steven Theiss
  • Patent number: 6836124
    Abstract: A capacitance monitoring system includes a capacitance gauge head for monitoring the capacitance between a measuring electrode and an electric cable travelling along a path parallel to the measuring electrode. The output from the capacitor gauge head is fed to a Fast Fourier Transform device (40) to produce, to indicate discrete cyclical faults in the cable and the frequencies to which they would be relevant. A cable speed detector (44) feeds a reference table device which stores different correction factors to correct the amplitude of the cyclical faults detected due to the attenuation imposed on the measured signal because of the specific length of the electrode. A multiplier (46) multiplies the cyclical fault signals detected by the relevant factors from the reference table device (42).
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: December 28, 2004
    Assignee: Beta Lasermike Limited
    Inventors: Patrick Fleming, Lee Coleman