Patents by Inventor Wen-Ching Hsu

Wen-Ching Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180315814
    Abstract: A bonded substrate for epitaxial growth and a method for forming the same are disclosed. The method includes steps of providing a first substrate, which has a first dopant concentration; providing a second substrate, which has a second dopant concentration, wherein the second dopant concentration is lower than the first dopant concentration; directly bonding a first surface of the first substrate with a second surface of the second substrate to form a bonded substrate; annealing the bonded substrate to form a high impedance layer in the bonded substrate; and removing part of the second substrate to expose the high impedance layer depending on the requirements whereby, the bonded substrate formed by the method could have a heavily doped substrate which includes a stronger strength and the impedance layer formed thereon, which could effectively increase the substrate strength, reduce the leakage current, and sustains a higher breakdown voltage.
    Type: Application
    Filed: March 23, 2018
    Publication date: November 1, 2018
    Applicant: GLOBALWAFERS CO., LTD.
    Inventors: CHUN-I FAN, CHIH-YUAN CHUANG, MAN-HSUAN LIN, WEN-CHING HSU
  • Publication number: 20180315815
    Abstract: An epitaxial substrate and a method for forming the same are disclosed. The epitaxial substrate includes a substrate, a deposition layer, a buffer layer and an epitaxial layer. The deposition layer is directly formed on the substrate, wherein the deposition layer includes a gradient doping concentration, and has a first surface and a second surface which are opposite to each other; the gradient doping concentration has a minimum value at the first surface. The buffer layer is formed on the deposition layer, and an epitaxial layer is formed on the buffer layer. The epitaxial layer is mainly formed of group III-V nitride. The substrate and the deposition layer are formed of homogeneous material. Since the deposition layer is directly formed on the substrate, and the deposition layer and the substrate are formed of a homogeneous material, the epitaxial substrate includes a good heat dissipation efficiency and low leakage current.
    Type: Application
    Filed: March 23, 2018
    Publication date: November 1, 2018
    Applicant: GLOBALWAFERS CO., LTD.
    Inventors: CHE-MING LIU, Man-Hsuan Lin, Chih-Yuan Chuang, Shuo-Hung Hsu, Chuan-Wei Tsou, Wen-Ching Hsu
  • Publication number: 20180297851
    Abstract: Present disclosure provides a multicrystalline silicon (mc-Si) brick, including a bottom portion starting from a bottom to a height of 100 mm, a middle portion starting from the height of 100 mm to a height of 200 mm; and a top portion starting from the height of 200 mm to a top. A percentage of incoherent grain boundary in the bottom portion is greater than a percentage of incoherent grain boundary in the top portion. Present disclosure also provides a multicrystalline silicon (mc-Si) wafer. The mc-Si wafer includes a percentage of non-? grain boundary from about 60 to about 75 and a percentage of ?3 grain boundary from about 12 to about 25.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 18, 2018
    Inventors: Hung-Sheng CHOU, Yu-Min YANG, Wen-Huai YU, Sung Lin HSU, Wen-Ching HSU, Chung-Wen LAN, Yu-Ting WONG
  • Patent number: 10103108
    Abstract: A nanostructured chip includes a substrate and a nanostructured layer, wherein the substrate has a first surface and a second surface on which the nanostructured layer is formed. A method of producing the nanostructured chip includes the step of forming the nanostructured layer on the second surface of the substrate. Whereby, the nanostructured layer effectively disperses a stress to increase the flexural strength of the nanostructured chip. Therefore, during the subsequent procedures to form an epitaxial layer on the first surface, the nanostructured layer is helpful to prevent the epitaxial layer from generating cracks, and prevent the substrate from bowings, or fragments.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: October 16, 2018
    Assignee: GLOBALWAFERS CO., LTD.
    Inventors: Jer-Liang Yeh, Chih-Yuan Chuang, Chun-I Fan, Chien-Jen Sun, Ying-Ru Shih, Wen-Ching Hsu
  • Publication number: 20180286664
    Abstract: An epitaxial substrate and a method of manufacturing the same are provided. The epitaxial substrate includes a handle substrate, a heat dissipation layer on the handle substrate, a high-resistance silicon substrate on the heat dissipation layer, and a III-V semiconductor layer grown on the high-resistance silicon substrate. The heat dissipation layer has high thermal conductivity. The high-resistance silicon substrate has a resistance more than 100 ohm·cm. Diameters of the high-resistance silicon substrate and the semiconductor film are smaller than a diameter of the handle substrate, such that the epitaxial substrate is a convex substrate.
    Type: Application
    Filed: March 15, 2018
    Publication date: October 4, 2018
    Applicant: GlobalWafers Co., Ltd.
    Inventors: Chun-I Fan, Chih-Yuan Chuang, Man-Hsuan Lin, Wen-Ching Hsu
  • Patent number: 10087080
    Abstract: A method of fabricating a poly-crystalline silicon ingot includes: (a) loading a nucleation promotion layer onto a bottom of a mold; (b) providing a silicon source on the nucleation promotion layer in the mold; (c) heating the mold until the silicon source is melted into a silicon melt completely; (d) controlling at least one thermal control parameter regarding the silicon melt continually to enable the silicon melt to nucleate on the nucleation promotion layer such that a plurality of silicon grains grow in the vertical direction; (e) controlling the at least one thermal control parameter to enable the plurality of the silicon grains to continuously grow with an average grain size increasing progressively in the vertical direction until entirety of the silicon melt is solidified to obtain the poly-crystalline silicon ingot, wherein the nucleation promotion layer is loaded by spreading a plurality of mono-Si particles over the bottom of the mold.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: October 2, 2018
    Assignee: Sino-American Silicon Products Inc.
    Inventors: Wen-Huai Yu, Cheng-Jui Yang, Yu-Min Yang, Kai-Yuan Pai, Wen-Chieh Lan, Chan-Lu Su, Yu-Tsung Chiang, Sung-Lin Hsu, Wen-Ching Hsu, Chung-Wen Lan
  • Patent number: 10065863
    Abstract: A poly-crystalline silicon ingot having a bottom and defining a vertical direction includes a plurality of silicon grains grown in the vertical direction, in which the plurality of the silicon grains have at least three crystal orientations; and a nucleation promotion layer comprising a plurality of chips and chunks of poly-crystalline silicon on the bottom, wherein the poly-crystalline silicon ingot has a defect density at a height ranging from about 150 mm to about 250 mm of the poly-crystalline silicon ingot that is less than 15%.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: September 4, 2018
    Assignee: Sino-American Silicon Products Inc.
    Inventors: Wen-Huai Yu, Cheng-Jui Yang, Yu-Min Yang, Kai-Yuan Pai, Wen-Chieh Lan, Chan-Lu Su, Yu-Tsung Chiang, Sung-Lin Hsu, Wen-Ching Hsu, Chung-Wen Lan
  • Patent number: 10053797
    Abstract: A crystal growth apparatus includes a crucible, a heating device, a thermal insulation cover, and a driving device. The crucible contains materials to be melted, wherein the heating device heats the crucible to melt the materials; the thermal insulation cover is provided upon the materials, wherein the thermal insulation cover includes a main body, which has a bottom surface facing an interior of the crucible, and a insulating member being provided at the main body; the driving device moves the thermal insulation cover towards or away from the materials, whereby, the thermal insulation cover effectively blocks heat conduction and heat convection, which prevents thermal energy from escaping out of the crucible.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: August 21, 2018
    Assignee: GLOBALWAFERS CO., LTD.
    Inventors: Lu-Chung Chuang, Chih-Chieh Yu, Wen-Chieh Lan, I-Ching Li, Wen-Ching Hsu, Jiunn-Yih Chyan
  • Patent number: 10029919
    Abstract: Present disclosure provides a multicrystalline silicon (mc-Si) brick, including a bottom portion starting from a bottom to a height of 100 mm, a middle portion starting from the height of 100 mm to a height of 200 mm; and a top portion starting from the height of 200 mm to a top. A percentage of incoherent grain boundary in the bottom portion is greater than a percentage of incoherent grain boundary in the top portion. Present disclosure also provides a multicrystalline silicon (mc-Si) wafer. The mc-Si wafer includes a percentage of non-? grain boundary from about 60 to about 75 and a percentage of ?3 grain boundary from about 12 to about 25.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: July 24, 2018
    Assignee: SINO-AMERICAN SILICON PRODUCTS INC.
    Inventors: Hung-Sheng Chou, Yu-Min Yang, Wen-Huai Yu, Sung Lin Hsu, Wen-Ching Hsu, Chung-Wen Lan, Yu-Ting Wong
  • Publication number: 20180144962
    Abstract: A wafer susceptor includes a main plate, a plurality of minor plates, and a plurality of plugs. The main plate has a plurality of first notches. The minor plates are respectively disposed in the first notches, and each of the minor plates has a second notch carrying a wafer and an engaging surface of inclination engaged with a side surface of the first notch. A first angle of 20 degrees to 45 degrees is included between the engaging surface of inclination and a horizontal plane. The second notch has a flat side corresponding to a flat of the wafer. An eave portion is disposed on the flat side. The plugs are respectively located between the main plate and the minor plates and are configured to fix the minor plates.
    Type: Application
    Filed: October 22, 2017
    Publication date: May 24, 2018
    Applicant: GlobalWafers Co., Ltd.
    Inventors: Tang-Chi Lin, Chun-I Fan, Man-Hsuan Lin, Wen-Ching Hsu
  • Patent number: 9903043
    Abstract: The invention provides a crucible assembly and method of manufacturing a crystalline silicon ingot by use of such crucible assembly. The crucible assembly of the invention includes a crucible body and a fiber textile article. The fiber textile article is made of a plurality of carbon fibers, and is loaded on a bottom of the crucible body. The fiber textile article has a plurality of intrinsic pores randomly arranged.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: February 27, 2018
    Assignee: SINO-AMERICAN SULICON PRODUCTS INC.
    Inventors: Wen-Huai Yu, Hung-Sheng Chou, Yu-Min Yang, Kuo-Wei Chuang, Sung-Lin Hsu, I-Ching Li, Wen-Ching Hsu
  • Patent number: 9885125
    Abstract: A method for manufacturing an isolating layer onto a crucible includes the steps as follows: providing a spraying device for the following spraying steps; heating the crucible and measuring the heated crucible to get a first temperature; spraying a slurry on the inner wall of the crucible to form an isolating layer by a spraying unit with a predetermined spraying manner; measuring the isolating layer to get a second temperature; obtaining a value for the difference between the first and second temperatures and judging whether the difference value in a within predetermined difference scope or not, in which the predetermined difference scope is about 6° C.˜12° C.; when the difference value is not in the predetermined difference scope, adjusting the predetermined spraying manner; when the difference value is in the predetermined difference scope, implementing the above spraying steps to the crucible.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: February 6, 2018
    Assignee: Sino-American Silicon Products Inc.
    Inventors: Hung-Sheng Chou, Li Wei Li, Wen-Huai Yu, Bruce Hsu, Chun-I Fan, Wen Ching Hsu
  • Publication number: 20180019115
    Abstract: A semiconductor substrate and a manufacturing method thereof are provided. The semiconductor substrate has an epitaxy region located at a central portion of a main plane of the semiconductor substrate, a periphery region surrounding the epitaxy region and an injured region distributed inside the periphery region.
    Type: Application
    Filed: May 4, 2017
    Publication date: January 18, 2018
    Applicant: GlobalWafers Co., Ltd.
    Inventors: Chun-I Fan, Chih-Yuan Chuang, Ying-Ru Shih, Wen-Ching Hsu
  • Publication number: 20170263482
    Abstract: A wafer carrier for processing a plurality of wafers includes a carrier body which rotatable about a central axis, and a plurality of pockets formed in the carrier body. Each of the pockets has an access opening and an inner periphery surface extending from the access opening to terminate at a floor surface. A lower periphery region of the inner periphery surface has a most distal region which is most distal from the central axis. When the carrier body is rotated about the central axis, a corresponding one of the wafers is less likely to be damaged due to a centrifugal force applied to the corresponding one of the wafers.
    Type: Application
    Filed: March 12, 2017
    Publication date: September 14, 2017
    Inventors: Yen-Lun Huang, Chien-Jen Sun, Ying-Ru Shih, Wen-Ching Hsu
  • Publication number: 20170233257
    Abstract: A poly-crystalline silicon ingot having a bottom and defining a vertical direction includes a plurality of silicon grains grown in the vertical direction, in which the plurality of the silicon grains have at least three crystal orientations; and a nucleation promotion layer comprising a plurality of chips and chunks of poly-crystalline silicon on the bottom, wherein the poly-crystalline silicon ingot has a defect density at a height ranging from about 150 mm to about 250 mm of the poly-crystalline silicon ingot that is less than 15%.
    Type: Application
    Filed: May 1, 2017
    Publication date: August 17, 2017
    Applicant: Sino-American Silicon Products Inc.
    Inventors: Wen-Huai Yu, Cheng-Jui Yang, Yu-Min Yang, Kai-Yuan Pai, Wen-Chieh Lan, Chan-Lu Su, Yu-Tsung Chiang, Sung-Lin Hsu, Wen-Ching Hsu, Chung-Wen Lan
  • Patent number: 9708727
    Abstract: A stirring apparatus of an ingot casting furnace includes a rotating shaft and at least one fin. The fin is provided onto the rotating shaft, and has a first edge, a second edge of unequal length provided correspondingly, and a third edge connecting the first and the second edges. The rotating shaft can be driven to rotate, which consequently drives the at least one fin to stir materials in a crucible. The length of the first edge is different from that of the second edge in order for the materials in the crucible can be mixed with dopants more uniformly during the stirring process to produce ingots of stable quality.
    Type: Grant
    Filed: April 11, 2015
    Date of Patent: July 18, 2017
    Assignee: GLOBALWAFERS CO., LTD.
    Inventors: Lu-Chung Chuang, Chih-Chieh Yu, Wen-Chieh Lan, Jiunn-Yih Chyan, I-Ching Li, Wen-Ching Hsu
  • Publication number: 20170162378
    Abstract: A method of manufacturing a substrate for epitaxy is disclosed, including the following steps. Dispose a buffer layer on a base, wherein the buffer layer is constituted by stacked nitride layers formed by the process of atomic layer deposition. The buffer layer could alternatively be constituted by stacked at least one first buffer sub-layer and at least one second buffer sub-layer, wherein the first and second buffer sub-layers are respectively constituted by layered first nitride layers and layered second nitride layers, which are both formed by the process of atomic layer deposition. While forming the buffer layer, perform ion bombardment each time a single layer of the nitride layer, the first nitride layer, or the second nitride layer is formed. Whereby, the base and the buffer layer constitute the substrate for epitaxy, which effectively enhances the crystallinity of the buffer layer.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 8, 2017
    Inventors: Miin-Jang CHEN, Yuan-Chuan CHUANG, Huan-Yu SHIH, Ying-Ru SHIH, Wen-Ching HSU
  • Patent number: 9637391
    Abstract: A crystalline silicon ingot and a method of fabricating the same are provided. The method utilizes a nucleation promotion layer to facilitate a plurality of silicon grains to nucleate on the nucleation promotion layer from a silicon melt and grow in a vertical direction into silicon grains until the silicon melt is completely solidified. The increment rate of defect density in the silicon ingot along the vertical direction has a range of 0.01%/mm˜10%/mm.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: May 2, 2017
    Assignee: Sino-American Silicon Products Inc.
    Inventors: Wen-Huai Yu, Cheng-Jui Yang, Yu-Min Yang, Kai-Yuan Pai, Wen-Chieh Lan, Chan-Lu Su, Yu-Tsung Chiang, Sung-Lin Hsu, Wen-Ching Hsu, Chung-Wen Lan
  • Patent number: 9627197
    Abstract: The invention provides a composite substrate, a semiconductor device including such composite substrate, and a method of making the same. In particular, the composite substrate of the invention includes a nitride-based single crystal layer transformed from a nitride-based poly-crystal layer, which has a specific thickness of approximately between 2 nm and 100 nm.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: April 18, 2017
    Assignee: GLOBALWAFERS CO., LTD.
    Inventors: Miin-Jang Chen, Huan-Yu Shih, Wen-Ching Hsu, Ray-Ming Lin
  • Patent number: 9620461
    Abstract: A laminar structure of semiconductors comprises a silicon substrate, an epitaxial layer, a protective layer, a first layer and a second layer. The epitaxial layer is arranged above the silicon substrate and the protective layer is arranged below the silicon substrate. Thermal expansion coefficients of the epitaxial layer and the protective layer are both either greater than or less than that of the silicon substrate. The first layer is arranged between the silicon substrate and the protective layer; and the second layer is arranged between the silicon substrate and the epitaxial layer, wherein the band gap of the first layer and the second layer are both greater than 3 eV. By arranging the protective layer below the silicon substrate, stress generated between the silicon substrate and the epitaxial layer can be reduced to prevent occurrence of bending or crack. Therefore, yield can be promoted and costs can be reduced.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: April 11, 2017
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Wen-Ching Hsu, Chia-Wen Ko, Chiou-Mei Luo