For Crystallization From Liquid Or Supercritical State Patents (Class 117/206)
  • Patent number: 8652257
    Abstract: A melting furnace, mounted adjacent a growth furnace, comprises a receiving container for melting therein raw material in a particle or powder form falling in it from a feeder. The receiving container accommodates a set of slope-wise plates providing a distributed sliding of partially melted raw material particles over the surface of these plates and their complete melting while moving downward; eventually the melted raw material flows into the crucible of the growth furnace through a conveying tube extending slantingly from the bottom of the receiving container to the crucible through coaxial openings in housings of both furnaces. The rate of feeding is given solely by the feeder, and at continuous feeding the raw material flows continuously by gravity from the feeder to the crucible of the growth furnace, first in a solid state (powder, granules, pellets, etc.) and then in a liquid state.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 18, 2014
    Inventors: Lev George Eidelman, Vladimir Ilya Zheleznyak
  • Patent number: 8652253
    Abstract: An arrangement for manufacturing a crystal of the melt of a raw material comprises: a furnace having a heating device with one or more heating elements, which are configured to generate a gradient temperature field directed along a first direction, a plurality of crucibles for receiving the melt, which are arranged within the gradient temperature field side by side, and a device for homogenizing the temperature field within a plane perpendicular to the first direction in the at least two crucibles. The arrangement further has a filling material inserted within a space between the crucibles wherein the filling shows an anisotropic heat conductivity. Additionally or alternatively, the arrangement may comprise a device for generating magnetic migration fields, both the filling material having the anisotropic heat conductivity and the device for generating magnetic migration fields being suited to compensate or prevent the formation of asymmetric phase interfaces upon freezing of the raw melt.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: February 18, 2014
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Stefan Eichler, Thomas Bünger, Michael Butter, Rico Rühmann, Max Scheffer-Czygan
  • Patent number: 8647432
    Abstract: A method for making a large surface area silicon filament for production of bulk polysilicon by chemical vapor deposition (CVD) includes melting silicon and growing the filament from the melted silicon by an EFG method using a shaping die. The cross sectional shape of the silicon filament is constant over its axial length to within a tolerance of 10%. In embodiments, a plurality of identical and/or dissimilar filaments are grown simultaneously using a plurality of shaping dies. The filaments can be tubular. Filament cross sections can be annular and/or can include outwardly extending fins, with wall and/or fin thicknesses constant to within 10%. Filaments can be doped with at least one element from groups 3 and 5 of the Periodic Table. The filament can have a length equal to a length of a specified slim rod filament, and a total impedance not greater than the slim rod impedance.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: February 11, 2014
    Assignee: GTAT Corporation
    Inventors: Yuepeng Wan, Santhana Raghavan Parthasarathy, Carl Chartier, Adrian Servini, Chandra P Khattak
  • Patent number: 8641821
    Abstract: Provided is a manufacturing device of an aluminum nitride single crystal including a crucible. An aluminum nitride raw material and a seed crystal are stored in an inner portion of the crucible. The seed crystal is placed so as to face the aluminum nitride raw material. The crucible includes an inner crucible and an outer crucible. The inner crucible stores the aluminum nitride raw material and the seed crystal inside the inner crucible. The inner crucible is also corrosion resistant to a sublimation gas of the aluminum nitride raw material. The inner crucible includes either, a single body of a metal having an ion radius larger than an ion radius of an aluminum, or includes a nitride of the metal. The outer crucible includes a boron nitride. The outer crucible covers the inner crucible.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: February 4, 2014
    Assignees: National Institute of Advanced Industrial Science and Technology, Fujikura Ltd.
    Inventors: Tomohisa Katou, Ichirou Nagai, Tomonori Miura, Hiroyuki Kamata
  • Patent number: 8641822
    Abstract: An improvement to a method and an apparatus for growing a monocrystalline silicon ingot from silicon melt according to the CZ process. The improvement performs defining an error between a target taper of a meniscus and a measured taper, and translating the taper error into a feedback adjustment to a pull-speed of the silicon ingot. The conventional control model for controlling the CZ process relies on linear control (PID) controlling a non-linear system of quadratic relationship defined in the time domain between the diameter and the pull-speed. The present invention transforms the quadratic relationship in the time domain between the diameter and the pull-speed into a simile, linear relationship in the length domain between a meniscus taper of the ingot and the pull-speed.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: February 4, 2014
    Assignee: Sumco Phoenix Corporation
    Inventors: Benno Orschel, Joel Kearns, Keiichi Takanashi, Volker Todt
  • Patent number: 8609059
    Abstract: To provide a production method for a nitride crystal, where a nitride crystal can be prevented from precipitating in a portion other than on a seed crystal and the production efficiency of a gallium nitride single crystal grown on the seed crystal can be enhanced. In a method for producing a nitride crystal by an ammonothermal method in a vessel containing a mineralizer-containing solution, out of the surfaces of said vessel and a member provided in said vessel, at least a part of the portion coming into contact with said solution is constituted by a metal or alloy containing one or more atoms selected from the group consisting of tantalum (Ta), tungsten (W) and titanium (Ti), and has a surface roughness (Ra) of less than 1.80 ?m.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: December 17, 2013
    Assignees: Mitsubishi Chemical Corporation, Tohoku University, The Japan Steel Works, Ltd.
    Inventors: Yutaka Mikawa, Makiko Kiyomi, Yuji Kagamitani, Toru Ishiguro, Yoshihiko Yamamura
  • Publication number: 20130319321
    Abstract: In various embodiments, a precursor powder is pressed into an intermediate volume and chemically reduced, via sintering, to form a metallic shaped article.
    Type: Application
    Filed: March 13, 2013
    Publication date: December 5, 2013
    Inventors: Maria Bozena Winnicka, Gary A. Rozak
  • Patent number: 8580036
    Abstract: The method and apparatus includes a vessel having a bottom and sidewalls arranged to house the material in a molten state. A temperature controlled horizontally oriented, cooling plate is movable into and out of the top of the molten material. When the cooling plate is lowered into the top of the melt, an ingot of solid silicon is solidified downwards.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: November 12, 2013
    Assignee: Elkem Solar AS
    Inventor: Kenneth Friestad
  • Patent number: 8574525
    Abstract: Boron-containing compounds, gasses and fluids are used during ammonothermal growth of group-Ill nitride crystals. Boron-containing compounds are used as impurity getters during the ammonothermal growth of group-Ill nitride crystals. In addition, a boron-containing gas and/or supercritical fluid is used for enhanced solubility of group-Ill nitride into said fluid.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 5, 2013
    Assignee: The Regents of the University of California
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Publication number: 20130284084
    Abstract: A method for manufacturing a crucible for the crystallization of silicium comprising the steps of •preparing a slurry of solids and liquids, said solids consisting of •silicon metal powder •up to 25% (w/w) SiC powder •up to 10% (w/w) SiN •up to 0.5% (w/w) of a catalyst •up to 1% (w/w) of a binder •forming the slurry into a green body of a crucible •heating the green body in a nitrogen atmosphere, optionally comprising inert gas, to react the silicon at least partially to silicon nitride.
    Type: Application
    Filed: December 19, 2011
    Publication date: October 31, 2013
    Applicant: Steuler Solor GMBH
    Inventor: Rune Roligheten
  • Patent number: 8568532
    Abstract: Materials of a nitride single crystal of a metal belonging to III group and a flux are contained in a crucible, which is contained in a reaction container, the reaction container is contained in an outer container, the outer container is contained in a pressure container, and nitrogen-containing atmosphere is supplied into the outer container and melt is generated in the crucible to grow a nitride single crystal of a metal belonging to III group. The reaction container includes a main body containing the crucible and a lid. The main body includes a side wall having a fitting face and a groove opening at the fitting face and a bottom wall. The lid has an upper plate part including a contact face for the fitting face of the main body and a flange part extending from the upper plate part and surrounding an outer side of said side wall.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: October 29, 2013
    Assignees: NGK Insulators, Ltd.
    Inventors: Makoto Iwai, Shuhei Higashihara, Yusuke Mori, Yasuo Kitaoka, Naoya Miyoshi
  • Patent number: 8562740
    Abstract: The present invention relates to an apparatus and method for purifying silicon using directional solidification. The apparatus can be used more than once for the directional solidification of silicon without failure. The apparatus and method of the present invention can be used to make silicon crystals for use in solar cells.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: October 22, 2013
    Assignee: Silicor Materials Inc.
    Inventors: Scott Nichol, Dan Smith
  • Patent number: 8535441
    Abstract: A lid for a crystal growth chamber crucible is constructed by forming arcuate sector-shaped portions and coupling them in abutting relationship, for example by welding, to form an annular profile fabricated lid. The arcuate sector-shaped portions may be formed and removed from a lid fabrication blank with less waste than when unitary annular lids are formed and removed from a similarly sized fabrication blank. For example, the sector-shaped portions may be arrayed in an undulating pattern on the fabrication sheet.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: September 17, 2013
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mark S. Andreaco, Troy Marlar, Brant Quinton
  • Patent number: 8535442
    Abstract: This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: September 17, 2013
    Assignee: H.C. Materials Corporation
    Inventors: Pengdi Han, Jian Tian
  • Publication number: 20130228120
    Abstract: A method of growing a diamond mass in a liquid growth medium. The liquid growth medium can include a carbon source, a diamond growth catalyst such as a diamond catalyst metal-rare earth element alloy or nanocatalyst, and a dissociated hydrogen of a hydrogen source. The carbon source provides carbon atoms for growing diamond and can include a diamond seed material for diamond growth. The molten liquid phase provides a diamond growth catalyst which allows the carbon to form diamond at the temperature and low pressure conditions discussed. Furthermore, the dissociated hydrogen acts as a concentrator for assembling carbon atoms at a relatively high concentration which mimicks, in some respects, diamond growth under more conventional high pressure processes without the high pressure.
    Type: Application
    Filed: August 28, 2012
    Publication date: September 5, 2013
    Inventor: Chien-Min Sung
  • Patent number: 8518180
    Abstract: A silicon single crystal pull-up apparatus is used to pull up a doped silicon single crystal from a melt by means of the Czochralski process and includes a pull-up furnace, a sample chamber which is externally mounted on the pull-up furnace and houses a sublimable dopant, a shielding means for thermally isolating the interior of the pull-up furnace and the interior of the sample chamber, a sample tube which can be raised and lowered between the interior of the sample chamber and the interior of the pull-up furnace, and a raising and lowering means which is provided with guide rails on which the sample tube can slide and a wire mechanism by which the sample tube is raised and lowered along the guide rails.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: August 27, 2013
    Assignee: Sumco Techxiv Corporation
    Inventors: Yasuhito Narushima, Shinichi Kawazoe, Fukuo Ogawa, Toshimichi Kubota, Tomohiro Fukuda
  • Patent number: 8512470
    Abstract: A method for growing high-resistivity single crystals includes placing a raw material in a vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the moisture in the raw material, exhausting the vaporized moisture from the vacuum-sealable ampoule, vacuum-sealing the vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the oxide compounds in the raw material, cooling a bulb in a cap on the vacuum-sealable ampoule to produce condensed oxide compounds on an inner surface of the bulb, removing the bulb and the condensed oxide compounds from the vacuum-sealable ampoule, wherein the raw material in the vacuum-sealable ampoule comprises carbon as an impurity, and placing the vacuum-sealable ampoule comprising the raw material in a crystal growth apparatus to grow a high-resistivity crystal from the raw material.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: August 20, 2013
    Assignee: China Crystal Technologies Co. Ltd
    Inventor: Meng Zhu
  • Publication number: 20130192517
    Abstract: A method for synthesizing monocrystalline alumina nanofibers by controlled liquid phase oxidation of a melt including molten aluminum. The method comprises two stages. During the first stage, metallic aluminum is melted and various additives are introduced into the melt. During the second stage, the alumina nanofibers are synthesized from the resulting melt in the presence of oxygen. In one or more embodiments, the inventive method is performed in a reactor. The reactor is designed to provide the heating and to enable melting of metallic aluminum. In addition, the reactor is designed to maintain a sustained temperature of between 660° C. and 1,000° C. When the additives are introduced into the molten aluminum, it is desirable to provide steady and uniform the stirring of the melt. To this end, the reactor may be provided with a stirring mechanism.
    Type: Application
    Filed: January 31, 2013
    Publication date: August 1, 2013
    Applicant: ANF TECHNOLOGY LIMITED
    Inventor: ANF Technology Limited
  • Patent number: 8486343
    Abstract: A structure for mounting a novel reaction tube is capable of following up the thermal expansion of the reaction tube without the need of hanging down the reaction tube in the apparatus for producing silicon. In a reaction unit in a reaction vessel body of the apparatus for producing silicon, there are provided a gas feed pipe for feeding chlorosilanes and hydrogen, a reaction tube for precipitating silicon, a high-frequency coil arranged on the outer circumferential side of the reaction tube to melt the precipitated silicon, a heat insulating material provided between the reaction tube and the high-frequency coil, and an intermediate wall provided at the lower portion of the reaction unit to support the heat insulating material. The reaction tube is supported on the upper surface of the intermediate wall.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: July 16, 2013
    Assignee: Tokuyama Corporation
    Inventors: Hiroo Noumi, Satoru Wakamatsu, Nobuaki Yoshimatsu
  • Patent number: 8449676
    Abstract: A silica glass crucible having a sidewall portion and a bottom portion is provided with a first synthetic silica glass layer constituting an inner layer at least in the sidewall portion, a second synthetic silica glass layer constituting an inner layer at least in a region including a center of the bottom portion, and a natural silica glass layer constituting an outer layer in the sidewall portion and the bottom portion. A melting rate of the second synthetic silica glass layer with respect to a silicon melt is higher than that of the first synthetic silica glass layer. An aluminum concentration of the second synthetic silica glass layer is higher than that of the first synthetic silica glass layer.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: May 28, 2013
    Assignee: Japan Super Quartz Corporation
    Inventors: Masanori Fukui, Hiroshi Kishi
  • Patent number: 8449674
    Abstract: This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding member adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: May 28, 2013
    Assignee: AMG Idealcast Solar Corporation
    Inventors: James A. Cliber, Roger F. Clark, Nathan G. Stoddard, Paul Von Dollen
  • Publication number: 20130112135
    Abstract: An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Frederick M. Carlson, Brian T. Helenbrook
  • Patent number: 8435347
    Abstract: A high pressure apparatus and related methods for processing supercritical fluids is described. The apparatus includes a capsule, a heater, at least one ceramic ring with one or more scribe marks and/or cracks present. The apparatus optionally has a metal sleeve containing each ceramic ring. The apparatus also has a high-strength enclosure, end flanges with associated insulation, and a power control system. The apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: May 7, 2013
    Assignees: Soraa, Inc., Elmhurst Research, Inc.
    Inventors: Mark P. D'Evelyn, Joseph A. Kapp, John C. Lawrenson
  • Publication number: 20130104799
    Abstract: A shroud is provided. The shroud may include: a body defining a hollow space within the body, wherein the body is open at a bottom portion of the body to permit fluid communication between the hollow space and the outside of the body; an inlet and an outlet providing fluid communication through the body to the hollow space; a top portion of the body configured to provide a barrier between the hollow space and the outside of the body; and a baffle plate attached to the bottom portion of the body. A method for adding silicon to a silicon melt may be provided.
    Type: Application
    Filed: December 16, 2011
    Publication date: May 2, 2013
    Applicant: SPX Corporation
    Inventors: Richard H. BERG, Richard D. HECKERT
  • Patent number: 8431084
    Abstract: A crystallizer for the evaporative production of phenol-BPA adduct crystals is provided that achieves more uniform crystal growth while suppressing undesired crystal nucleation. The crystallizer includes a cylindrical vessel; a draft tube concentrically disposed within the cylindrical vessel such that an annular space is defined between the vessel and tube; an impeller that circulates liquid in the vessel through the draft tube and the annular space, and a plurality of nozzles mounted around an inner wall of said cylindrical vessel that introduce an evaporative coolant into the vessel. Each of the nozzles includes a discharge end disposed between about 30% and 60% of a radial extent of the annular space, and is located below an upper end of the draft tube a distance of between about 50% to 150% of the diameter of the vessel. Such a nozzle arrangement provides a consistent and uniform concentration of coolant across the surface of the boiling zone that prevents or at least reduces unwanted crystal nucleation.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: April 30, 2013
    Assignee: Badger Licensing LLC
    Inventor: Stephen W. Fetsko
  • Patent number: 8414701
    Abstract: In this method for manufacturing a silicon single crystal, when growing the silicon single crystal, in order to control the V/G value with high accuracy so as to yield a desired defect-free region, it is important to conduct the pulling at a constant pulling rate. In the method for pulling a silicon single crystal in the present invention, in order to control the V/G value with high accuracy, the distance ?t between the melt surface of the silicon melt and the heat shielding member that is disposed so as to oppose to and to partially cover this melt surface is continuously measured while pulling (growing) the silicon single crystal.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: April 9, 2013
    Assignee: Sumco Corporation
    Inventor: Keiichi Takanashi
  • Publication number: 20130074762
    Abstract: A method for manufacturing a group III nitride crystal on a seed crystal in a holding vessel holding therein a melt containing a group III metal, an alkali metal and nitrogen. The manufacturing method comprises the steps of causing the seed crystal to make a contact with the melt, setting an environment of the seed crystal to a first state offset from a crystal growth condition while in a state in which said seed crystal is in contact with the melt, increasing a nitrogen concentration in the melt, and setting the environment of the seed crystal to a second state suitable for crystal growth when the nitrogen concentration of the melt has reached a concentration suitable for growing the seed crystal.
    Type: Application
    Filed: November 16, 2012
    Publication date: March 28, 2013
    Inventors: Hirokazu Iwata, Seiji Sarayama, Minoru Fukuda, Tetsuya Takahashi, Akira Takahashi
  • Patent number: 8404046
    Abstract: A velocity of Ar gas flow passing through between a lower end of a cylindrical body and a thermal shielding body is influenced by arrangement of a pulling path of single crystal silicon, a cylindrical body, and a thermal shielding body. Accordingly, the velocity of the Ar gas flow passing through between a lower end of the cylindrical body and the thermal shielding body is controlled by adjusting a relative position of the pulling path of the single crystal silicon, the cylindrical body, and the thermal shielding body. As described above, dust falling off to silicon melt can be reduced, thereby preventing deterioration in quality of the single crystal silicon.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: March 26, 2013
    Assignee: Sumco Techxiv Corporation
    Inventors: Makato Kamogawa, Koichi Shimomura, Yoshiyuki Suzuki, Daisuke Ebi
  • Patent number: 8387413
    Abstract: In a known method for producing a component with a layer of transparent quartz glass, comprising: applying particles of synthetically produced quartz glass to a base body made of quartz glass and sintering the particles so as to form the quartz glass layer. Starting therefrom, in order to permit a comparatively inexpensive and reproducible production of a component with at least one layer of transparent quartz glass that is distinguished by ultrahigh purity and the absence of bubbles, it is suggested according to the invention that at least part of the SiO2 particles should be present in the form of cylindrical fragments of quartz glass fibers having a mean diameter ranging from 0.1 mm to 3 mm and a mean length ranging from 0.5 mm to 20 mm.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: March 5, 2013
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Walter Lehmann, Thomas Kayser
  • Patent number: 8361223
    Abstract: Provided is a method for reliably and easily measuring a liquid level by selecting an optimal reflection method from among a plurality of reflection methods, depending on growing conditions of a pulled single crystal. The method comprises: setting a plurality of measuring methods having different ways of determining the liquid level; creating, in advance, information that associates with a gap between the outer peripheral face of the single crystal and a predetermined position located between a heat shield and the outer peripheral face of the single crystal; determining the gap in accordance with manufacturing conditions; selecting a measuring method associated to the determined gap, on the basis of the information; and measuring the liquid level of a melt surface in use of the selected measuring method.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: January 29, 2013
    Assignee: Sumco Techxiv Corporation
    Inventors: Toshio Hayashida, Ayumi Kihara, Takuaki Takami
  • Patent number: 8349079
    Abstract: An apparatus for manufacturing a Group III nitride semiconductor is composed of a pressure vessel, a reaction vessel disposed within the pressure vessel, a heating device disposed within the pressure vessel so as to heat the reaction vessel, and a glove box filled with argon gas. The pressure vessel and the glove box are connected to each other via a gate valve. By virtue of this configuration, a large-sized reusable reaction vessel can be disposed within the pressure vessel without causing oxidation of Na.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: January 8, 2013
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Shiro Yamazaki, Koji Hirata
  • Patent number: 8349074
    Abstract: A method for detecting a diameter of a single crystal at the time of pulling the single crystal from a silicon melt contained in a crucible according to the Czochralski method, the method including at least: using two cameras placed equidistant from each other as a target diameter upon forming a straight-body portion of the single crystal and face both ends of the diameter of the single crystal in a growth point of the single crystal respectively, to separately capture both of the ends of the growth point of the single crystal from an outside of a furnace, the growth point being a contact point between the single crystal and a melt surface; and detecting the diameter of the single crystal on the basis of the captured images. As a result, diameter detection precision is improved.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: January 8, 2013
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Hiroshi Ohtsuna, Atsushi Iwasaki
  • Patent number: 8349075
    Abstract: The present invention reports a defect that has not been reported, and discloses a defect-controlled silicon ingot, a defect-controlled wafer, and a process and apparatus for manufacturing the same. The new defect is a crystal defect generated when a screw dislocation caused by a HMCZ (Horizontal Magnetic Czochralski) method applying a strong horizontal magnetic field develops into a jogged screw dislocation and propagates to form a cross slip during thermal process wherein a crystal is cooled. The present invention changes the shape and structure of an upper heat shield structure arranged between a heater and an ingot above a silicon melt, and controls initial conditions or operation conditions of a silicon single crystalline ingot growth process to reduce a screw dislocation caused by a strong horizontal magnetic field and prevent the screw dislocation from propagating into a cross slip.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: January 8, 2013
    Assignee: Siltron Inc.
    Inventors: Do-Won Song, Young-Hun Kim, Eun-Sang Ji, Young-Kyu Choi, Hwa-Jin Jo
  • Patent number: 8343275
    Abstract: The present invention resides in a silicon single crystal growth method of pulling up and growing a single crystal from a melt of a silicon raw material in a quartz crucible based on a Czochralski method, wherein the method comprises the steps of: applying a DC voltage between an outer wall of the quartz crucible acts as a positive electrode and a pulling wire or pulling shaft for pulling up the silicon single crystal acts as a negative electrode; and fixing an electric current flowing through the silicon single crystal over a period of time for pulling up the single crystal, to grow the single crystal; as well as a pulling apparatus therefor.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: January 1, 2013
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Yuuichi Miyahara, Atsushi Iwasaki, Tetsuhiro Oda
  • Patent number: 8343276
    Abstract: The present invention provides a high-temperature ionic state fluidized bed compound crystallization technology and an internal reactor structure thereof. The principle of the present invention is that reaction gas is effected by a group of high-frequency external magnetic fields and forms the high-temperature gaseous ion in the first quartz vacuum tube, then forms ion deposition diffusion in the second quartz vacuum tube preheated at constant temperature. As a result, other high-temperature gaseous ions except the silicon hydride are decomposed, rapidly deposited and crystallized in the ion diffusion chamber. And the un-decomposed silicon hydride gas is directly poured into the surface of the silicon heating body of the compound fluidized bed by the static negative high-voltage quartz spray hole to decompose and crystallize, or crystallize by a way of fluid state in the arched heating quartz tube communicating with the top of two quartz reaction furnaces.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 1, 2013
    Inventors: Haibiao Wang, Tetsunori Kunimune, Cecilia Wang
  • Patent number: 8337616
    Abstract: A single-crystal manufacturing apparatus comprises a chamber, a crucible in the chamber, a heater arranged around the crucible, a lifting mechanism for lifting a seed crystal, and a guide passage for the seed crystal and a grown single crystal. In the single-crystal manufacturing apparatus, a material polycrystal contained the crucible is melted by a heater, and the seed crystal is made to contact the molten polycrystal and is lifted. The single-crystal manufacturing apparatus comprises a cylindrical quartz tube having a curved bottom portion, and a dome-shaped quartz plate. The curved bottom portion faces the crucible from the upper portion of the chamber through the guide passage. The quartz plate is arranged to enclose the quartz tube. The quartz tube has a reflecting structure for reflecting a heat ray from at least its bottom portion whereas the quartz plate has a reflecting structure for reflecting the heat ray to the crucible.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: December 25, 2012
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventor: Takao Abe
  • Patent number: 8328937
    Abstract: A seed crystal axis used in a solution growth of single crystal production system is provided to prevent formation of polycrystals and grow a single crystal with a high growth rate. The seed crystal axis includes a seed crystal bonded to a seed crystal support member between which is interposed a laminated carbon sheet having a high thermal conductivity in a direction perpendicular to a solution surface of a solvent. The laminated carbon sheet includes a plurality of carbon thin films laminated with an adhesive or a plurality of pieces with differing lamination directions arranged in a lattice. Alternatively, a wound carbon sheet including a carbon strip wound concentrically from the center or a wound carbon sheet including a plurality of carbon strips with differing thicknesses which are wound and laminated from the center may be provided.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: December 11, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidemitsu Sakamoto, Yasuyuki Fujiwara
  • Patent number: 8317919
    Abstract: An improved system based on the Czochralski process for continuous growth of a single crystal ingot comprises a low aspect ratio, large diameter, and substantially flat crucible, including an optional weir surrounding the crystal. The low aspect ratio crucible substantially eliminates convection currents and reduces oxygen content in a finished single crystal silicon ingot. A separate level controlled silicon pre-melting chamber provides a continuous source of molten silicon to the growth crucible advantageously eliminating the need for vertical travel and a crucible raising system during the crystal pulling process. A plurality of heaters beneath the crucible establish corresponding thermal zones across the melt. Thermal output of the heaters is individually controlled for providing an optimal thermal distribution across the melt and at the crystal/melt interface for improved crystal growth. Multiple crystal pulling chambers are provided for continuous processing and high throughput.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: November 27, 2012
    Assignee: Solaicx, Inc.
    Inventor: David L Bender
  • Patent number: 8313577
    Abstract: An apparatus for producing single crystal silicon comprising: an induction heating coil that is disposed around the polycrystalline silicon rod for fusing the polycrystalline silicon rod; an exothermic ring that has a quartz-coated member covering the conductive member; a support member that supports the exothermic ring and passes through a wall of the housing in a rotatable manner; an operating device that rotates the support member and reciprocates the exothermic ring between a heating position where the exothermic ring is positioned close to the induction heating coil and a stand-by position where the exothermic ring is receded from the heating position; a sealing member that is provided between the wall of the housing and the support member and maintains the hermitic therebetween; and a cooling flow path that is formed in the support member and flows a cooling medium.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: November 20, 2012
    Assignee: Mitsubishi Materials Corporation
    Inventors: Noboru Chikusa, Teruhisa Kitagawa, Masaki Ito, Takanori Ito
  • Patent number: 8282896
    Abstract: Carriers or holders for holding microfluidic devices are provided. Some of the carriers that are provided include a hydration control device and/or a source of controlled fluid pressure to facilitate use of the carrier in conducting various types of analyses.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: October 9, 2012
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Richard Facer, Hany Ramaz Nassef
  • Patent number: 8268077
    Abstract: An upper heater for use in the production of a single crystal, the upper heater having electrodes to which a current is supplied and a heat generating section which generates heat by resistance heating are provided, the upper heater being used when a single crystal is produced by a Czochralski method, the upper heater being placed above a graphite heater which is placed so as to surround a crucible containing silicon melt, wherein the heat generating section is ring-shaped and is placed so as to surround the crucible, and has slits formed from the inside and the outside of the heat generating section in a horizontal direction. As a result, the upper heater controls a crystal defect of the single crystal efficiently and improves the oxygen concentration controllability.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: September 18, 2012
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventor: Kiyotaka Takano
  • Patent number: 8268074
    Abstract: A method and a device for producing oriented solidified blocks made of semi-conductor material are provided. The device includes a crucible, in which melt is received, and has an insulation which surrounds the crucible at least from the top and from the side and which is arranged at a distance therefrom at least above the crucible, and at least one heating device which is arranged above the crucible. The region inside the insulation above the crucible is divided by an intermediate cover in a process chamber and a heating chamber is arranged thereabove, where at least one heating element is arranged.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: September 18, 2012
    Assignee: Rec Scan Wafer AS
    Inventor: Franz Hugo
  • Patent number: 8257496
    Abstract: A weighing system is provided for a continuous Czochralski process that accurately measures the weight of the crucible and melt during crystal growth to control the introduction of feedstock in order to keep the weight approximately constant. The system can measure the weight of the crucible while the crucible is rotating, and is insensitive to vibrations of the melt surface as well as variable torques on the crucible shaft induced by the rotation. The system also measures the weight of the crucible and its contents in order to control the amount of feedstock recharged after an ingot is withdrawn.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: September 4, 2012
    Assignee: Solaicx, Inc.
    Inventors: David L. Bender, Gary Janik, Roy P. Crawford, David E. A. Smith
  • Publication number: 20120204783
    Abstract: A container for crystallization of a biopolymer of the invention is provided that includes a structure wherein two or more noble metals and/or noble metal-coated bodies are arranged at an interval of 1 to 1,000 nm. There are also provided a crystallization apparatus of a biopolymer, comprising the container for crystallization of a biopolymer, a method for producing a biopolymer crystal, comprising the steps of preparing the container for crystallization of a biopolymer, and making the structure contact with a biopolymer solution, and a substrate for crystallization of a biopolymer, having a structure wherein two or more noble metals and/or noble metal-coated bodies are arranged at an interval of 1 to 1,000 nm.
    Type: Application
    Filed: September 1, 2010
    Publication date: August 16, 2012
    Applicants: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY, NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Tetsuo Okutsu, Kosei Ueno, Hiroaki Misawa
  • Patent number: 8236104
    Abstract: A single-crystal manufacturing apparatus comprising at least: a main chamber configured to accommodate a crucible; a pulling chamber continuously provided above the main chamber, the pulling chamber into which a grown single crystal is pulled and accommodated; a gas inlet provided in the pulling chamber; a gas flow-guide cylinder downwardly extending from a ceiling of the main chamber; and a heat-insulating ring upwardly extending from a lower end portion of the gas flow-guide cylinder with a diameter of the heat-insulating ring increased so as to surround an outside of the gas flow-guide cylinder, wherein at least one window is provided in a region between 50 and 200 mm from a lower end of the gas flow-guide cylinder, and an opening area of the window accounts for 50% or more of a surface area of the region between 50 and 200 mm from the lower end of the gas flow-guide cylinder.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: August 7, 2012
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Satoshi Soeta, Toshifumi Fujii
  • Patent number: 8221545
    Abstract: A method and apparatus for growing a semiconductor crystal include pulling the semiconductor crystal from melt at a pull speed and modulating the pull speed by combining a periodic pull speed with an average speed. The modulation of the pull speed allows in-situ determination of characteristic temperature gradients in the melt and in the crystal during crystal formation. The temperature gradients may be used to control relevant process parameters that affect morphological stability or intrinsic material properties in the finished crystal such as for instance the target pull speed of the crystal or the melt gap, which determines the thermal gradient in the crystal during growth.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: July 17, 2012
    Assignees: Sumco Phoenix Corporation, Sumco Corporation
    Inventors: Benno Orschel, Andrzej Buczkowski, Joel Kearns, Keiichi Takanashi, Volker Todt
  • Patent number: 8216373
    Abstract: A temperature gradient is established in a crystallization crucible by means of a heat source and a cooling system. The cooling system comprises a heat exchanger and an adjustable additional heat source. The cooling system is preferably formed by an induction coil cooled by a coolant liquid circulating in the induction coil and by an electrically conductive induction susceptor positioned between the crucible and induction coil. The fabrication process comprises heating the crucible via the top and controlling heat extraction from the crucible downwards by means of the heat exchanger and by means of regulation of the adjustable additional heat source.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: July 10, 2012
    Assignees: Apollon Solar, Cyberstar, EFD Induction SA
    Inventors: Roland Einhaus, Francois Claude Lissalde, Pascal Rivat
  • Publication number: 20120167817
    Abstract: A method for producing silicon blocks comprises providing a crucible for receiving a silicon melt, with a base and a plurality of side walls connected to the base, attaching nuclei at least on an inner side of the base of the crucible, the nuclei having a melt temperature, which is greater than the melt temperature of silicon, filling the crucible with the silicon melt, solidifying the silicon melt beginning on the nuclei and removing the solidified silicon from the crucible.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 5, 2012
    Inventors: Bernhard FREUDENBERG, Marc DIETRICH, Mark HOLLATZ, Melanie HENTSCHE, Doreen NAUERT, Markus APEL
  • Patent number: 8197595
    Abstract: A method for producing thin silicon rods using a floating zone crystallization process includes supplying high frequency (HF) current to a flat induction coil having a central opening, a plurality of draw openings and a plate with a slot as a current supply of the HF current so as to provide a circumfluent current to the central opening. An upper end of a raw silicon rod is heated by induction using the flat induction coil so as to form a melt pool. A thin silicon rod is drawn upwards through each of the plurality of draw openings in the flat induction coil from the melt pool without drawing a thin silicon rod through the central opening having the circumfluent current.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: June 12, 2012
    Assignee: PV Silicon Forschungs und Produktions GmbH
    Inventors: Helge Riemann, Friedrich-Wilhelm Schulze, Joerg Fischer, Matthias Renner
  • Publication number: 20120137962
    Abstract: The present invention relates to a gas supply device for use in a crystal-growing furnace. The gas supply device has an insulation layer enclosing a crucible, a gas inlet mounted in the insulation layer, and a gas exit formed in the insulation layer. A gas flow guide shield with an adjustable angle is disposed at the opening of the gas inlet, so that the free surface of the melt is blown by the guided gas flow in such a manner that the gas flow takes the impurity away from the free surface efficiently. As a result, the crystal ingot obtained by solidifying the melt will exhibit a reduced concentration of impurities and an improved crystal quality.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 7, 2012
    Inventors: Jyh-Chen Chen, Ying-Yang Teng, Chung-Wei Lu, Hsueh-I Chen