Copper, Lead, Or Zinc Containing Patents (Class 136/265)
  • Patent number: 8383929
    Abstract: Under one aspect, a nonplanar photovoltaic module having a length includes: (a) an elongated nonplanar substrate; and (b) a plurality of solar cells disposed on the elongated nonplanar substrate, wherein each solar cell in the plurality of solar cells is defined by (i) a plurality of grooves around the nonplanar photovoltaic module and (ii) a groove along the length of the photovoltaic module. In some embodiments, each groove of the plurality of grooves about the photovoltaic module, independently, has a repeating pattern, a non-repeating pattern, or is helical. In some embodiments, the module further includes a patterned conductor providing serial electrical communication between adjacent solar cells. In some embodiments, portions of the patterned conductor providing serial electrical communication between adjacent solar cells are within a groove of the plurality of grooves about the photovoltaic module.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: February 26, 2013
    Assignee: Solyndra LLC
    Inventors: Erel Milshtein, Benyamin Buller
  • Publication number: 20130042910
    Abstract: The present invention provides a solar cell comprising an anode (12) and a cathode (11) with a photosensitive layer (14) therebetween, wherein the photosensitive layer is at most 1000 nm thick and comprises crystalline lead oxide as a photosensitive material, wherein the lead oxide is doped with antimony and/or indium.
    Type: Application
    Filed: January 14, 2011
    Publication date: February 21, 2013
    Applicant: ISIS INNOVATION LTD
    Inventor: Andrew Archibald Ronald Watt
  • Patent number: 8377736
    Abstract: The present invention provides methods for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates having a copper and indium composite structure, and including a peripheral region, the peripheral region including a plurality of openings, the plurality of openings including at least a first opening and a second opening. The method includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the furnace including a holding apparatus. The method further includes introducing a gaseous species into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to at least initiate formation of a copper indium diselenide film on each of the substrates.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: February 19, 2013
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20130037105
    Abstract: A compositional range of high strain point and/or intermediate expansion coefficient alkali metal free aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates or superstrates for photovoltaic devices, for example, thin film photovoltaic devices such as CdTe or CIGS photovoltaic devices or crystalline silicon wafer devices. These glasses can be characterized as having strain points ?600° C., thermal expansion coefficient of from 35 to 50×10?7/° C.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 14, 2013
    Inventors: Bruce Gardiner Aitken, James Edward Dickinson, JR., Timothy James Kiczenski, John Christopher Mauro, Adama Tandia
  • Patent number: 8372683
    Abstract: An RTP heating system and an RTP heating method, which can heat a photovoltaic-device intermediate product having a glass substrate, a Mo layer, and a light absorption layer in formation. The RTP heating system is composed of a chamber; a support member located in the chamber; a heating element mounted in the chamber for emitting infrared rays for heating; and a plurality of temperature sensors and a temperature control device for sensing and controlling thermal sources from the heating element and the support member. The infrared rays can be mostly reflected off the Mo layer to apply less direct heating to the glass substrate. Accordingly, the upper and lower surfaces of the photovoltaic-device intermediate product can be heated under different temperatures separately to prevent the glass substrate below the photovoltaic-device intermediate product from softening and deformation and to allow production of the light absorption layer on the Mo layer.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: February 12, 2013
    Assignee: ADPV Technology Limited
    Inventor: Shiezen Steven Huang
  • Patent number: 8372684
    Abstract: The method and system for selenization in fabricating CIS and/or CIGS based thin film solar cell overlaying cylindrical glass substrates. The method includes providing a substrate, forming an electrode layer over the substrate and depositing a precursor layer of copper, indium, and/or gallium over the electrode layer. The method also includes disposing the substrate vertically in a furnace. Then a gas including a hydrogen species, a selenium species and a carrier gas are introduced into the furnace and heated to between about 350° C. and about 450° C. to at least initiate formation of a copper indium diselenide film from the precursor layer.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: February 12, 2013
    Assignee: Stion Corporation
    Inventors: Robert D. Wieting, Steven Aragon, Chester A. Farris, III
  • Patent number: 8366973
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 5, 2013
    Assignee: Nanosolar, Inc
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Patent number: 8361831
    Abstract: In the zinc oxide film forming apparatus (1), the deposit containing zinc oxide is formed on the conductive layer of the resin substrate (9) by electrodeposition in the deposition part (2), and the resin substrate (9) is carried to the applying part (4). Subsequently, the film forming material which is in liquid or paste form and contains particles of zinc oxide and solvent is applied onto the conductive layer, and then the solvent is removed from the film forming material on the conductive layer by volatilization. It is therefore possible to easily and efficiently form the porous zinc oxide film which has superior adhesion to the conductive layer of the resin substrate (9).
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: January 29, 2013
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventor: Takeshi Yane
  • Publication number: 20130008495
    Abstract: In exemplary implementations of this invention, a photoelectrode includes a semiconductor for photocarrier generation, and a catalyst layer for altering the reaction rate in an adjacent electrolyte. The catalyst layer covers part of the semiconductor. The thickness of the catalyst layer is less than 60% of its minority carrier diffusion distance. If the photoelectrode is a photoanode, it has an OEP that is more than the potential of the valance band edge but less than the potential of the Fermi level of the semiconductor. If it is a photocathode, it has an RHE potential that is less than the potential of the conduction band edge but more than the potential of the Fermi level of the semiconductor. The absolute value of difference (OEP minus potential of valence band edge, or RHE potential minus potential of conduction band edge) is greater than zero and less than or equal to 0.2V.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 10, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Kimin Jun, Joseph Jacobson
  • Patent number: 8344241
    Abstract: Nanostructures and photovoltaic structures are disclosed. A nanostructure according to one embodiment includes an array of nanocables extending from a substrate, the nanocables in the array being characterized as having a spacing and surface texture defined by inner surfaces of voids of a template; an electrically insulating layer extending along the substrate; and at least one layer overlaying the nanocables. A nanostructure according to another embodiment includes a substrate; a portion of a template extending along the substrate, the template being electrically insulative; an array of nanocables extending from the template, portions of the nanocables protruding from the template being characterized as having a spacing, shape and surface texture defined by previously-present inner surfaces of voids of the template; and at least one layer overlaying the nanocables.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: January 1, 2013
    Assignees: Q1 Nanosystems Corporation, The Regents of the University of California
    Inventors: Ruxandra Vidu, Brian Argo, John Argo, Pieter Stroeve, Jie-Ren Ku
  • Patent number: 8344243
    Abstract: A method for forming a thin film photovoltaic device. The method provides a transparent substrate including a surface region. A first electrode layer overlies the surface region. A copper layer is formed overlying the first electrode layer and an indium layer is formed overlying the copper layer to form a multi-layered structure. At least the multi-layered structure is subjected to a thermal treatment process in an environment containing a sulfur bearing species to forming a bulk copper indium disulfide. The bulk copper indium disulfide material has a surface region characterized by a copper poor surface region having a copper to indium atomic ratio of less than about 0.95:1 and n-type impurity characteristics. The bulk copper indium disulfide material excluding the copper poor surface region forms an absorber region and the copper poor surface region forms at least a portion of a window region for the thin film photovoltaic device.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: January 1, 2013
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Publication number: 20120318361
    Abstract: A method for synthesizing a thin film of CZTS such as for use as an absorber in a photovoltaic device. The method includes providing a substrate in a chamber, and, then, depositing a film of CZTS material on the substrate, the CZTS material comprising copper, zinc, tin, and at least on chalcogen species. The depositing includes tuning an optical bandgap of the film with heterovalent alloying. The depositing is performed at low temperatures with the substrate provided in the chamber free of direct/active heating. For example, the substrate may be maintained at a temperature below about 150° C. during the depositing of the film. The heterovalent alloying involves controlling deposition rates for the copper and the zinc to define a copper to zinc ratio set the optical bandgap such as a value between about 1.0 eV and about 2.75 eV.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 20, 2012
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Glenn Teeter, Hui Du, Matthew Young, Pete Erslev
  • Patent number: 8330039
    Abstract: Provided is a solar cell module that comprises a solar cell assembly. The solar cell assembly is encapsulated by a poly(vinyl butyral) encapsulant and contains a silver component that is at least partially in contact with the poly(vinyl butyral) encapsulant. The poly(vinyl butyral) encapsulant comprises poly(vinyl butyral), about 15 to about 45 wt % of one or more plasticizers, and about 0.1 to about 2 wt % of one or more unsaturated heterocyclic compounds, based on the total weight of the poly(vinyl butyral) encapsulant. Further provided are an assembly for preparing the solar cell module; a process for preventing or reducing the discoloration of a poly(vinyl butyral) encapsulant in contact with a silver component in the solar cell module; and the use of the solar cell module to convert solar energy to electricity.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: December 11, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Rebecca L. Smith, Jason S. Wall, Katherine M. Stika
  • Patent number: 8329494
    Abstract: A method for manufacturing a solar cell including a substrate, a first electrode layer, a semiconductor layer, and a second electrode layer, includes forming a first sacrificial layer on a portion of a surface of the substrate; forming the first electrode layer on the substrate and on the first sacrificial layer; and dividing the first electrode layer by removing the first sacrificial layer and a portion of the first electrode layer formed on the first sacrificial layer.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: December 11, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Atsushi Denda, Hiromi Saito
  • Patent number: 8314326
    Abstract: A photovoltaic device and related methods. The device has a structured material positioned between an electron collecting electrode and a hole collecting electrode. An electron transporting/hole blocking material is positioned between the electron collecting electrode and the structured material. In a specific embodiment, negatively charged carriers generated by optical absorption by the structured material are preferentially separated into the electron transporting/hole blocking material. In a specific embodiment, the structured material has an optical absorption coefficient of at least 103 cm?1 for light comprised of wavelengths within the range of about 400 nm to about 700 nm.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: November 20, 2012
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Publication number: 20120285532
    Abstract: Provided is a transparent color solar cell, which includes a substrate, a first electrode layer disposed on the substrate, a transparent material layer including quantum dots having the same particle size, which absorb visible light provided from the sun through the first electrode layer and having a first wavelength region, and which selectively transmit visible light provided from the sun through the first electrode layer and having a second wavelength region, and a second electrode layer disposed on the transparent material layer.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sun Jin YUN, JungWook LIM, Yoo Jeong LEE
  • Publication number: 20120285537
    Abstract: A solar cell comprises a p-type semiconductor layer, an n-type semiconductor layer, and a superlattice semiconductor layer interposed between the p-type semiconductor layer and the n-type semiconductor layer, wherein the superlattice semiconductor layer has a stacked structure in which quantum layers and barrier layers are stacked alternately and repeatedly, wherein the stacked structure is formed whereby a miniband is formed by a quantum level of the quantum layers on the side of a conduction band, wherein an energy level at a bottom of the miniband is lower than an energy level at a bottom of the conduction band of the barrier layers, and an energy level at a top of the miniband is higher than an energy level, which is lower than the energy level at the bottom of the conduction band of the barrier layers by an amount twice as much as thermal energy at room temperature.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 15, 2012
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Hirofumi YOSHIKAWA, Makoto IZUMI, Yasutaka KUZUMOTO
  • Patent number: 8309844
    Abstract: Formulations and methods of making solar cell contacts and cells therewith are disclosed. The invention provides a photovoltaic cell comprising a front contact, a back contact, and a rear contact. The back contact comprises, prior to firing, a passivating layer onto which is applied a paste, comprising aluminum, a glass component, wherein the aluminum paste comprises, aluminum, another optional metal, a glass component, and a vehicle. The back contact comprises, prior to firing, a passivating layer onto which is applied an aluminum paste, wherein the aluminum paste comprises aluminum, a glass component, and a vehicle.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: November 13, 2012
    Assignee: Ferro Corporation
    Inventors: Nazarali Merchant, Aziz S. Shaikh, Srinivasan Sridharan
  • Patent number: 8299353
    Abstract: A solar cell including a photovoltaic layer, a first electrode layer, a second electrode layer, an insulating layer and a light-transparent conductive layer is provided. The photovoltaic layer has a first surface and a second surface. The first electrode layer having at least one gap is disposed on the first surface, wherein the at least one gap exposes a portion of the photovoltaic layer. The second electrode layer is disposed on the second surface. The insulating layer having a plurality of pores is located on the photovoltaic layer exposed by the at least one gap, wherein the holes expose a portion of the photovoltaic layer. The light-transparent conductive layer covers the insulating layer and is connected with the first electrode layer. The transparent electrode is connected with the photovoltaic layer through at least a part of the pores. A method of fabricating a solar cell is also provided.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: October 30, 2012
    Assignees: Tatung Company, Tatung University
    Inventors: Chiung-Wei Lin, Yi-Liang Chen
  • Patent number: 8298849
    Abstract: Methods for forming Cu—In—Ga—N (CIGN) layers for use in TFPV solar panels are described using reactive PVD deposition in a nitrogen containing atmosphere. In some embodiments, the CIGN layers can be used as an absorber layer and eliminate the need of a selenization step. In some embodiments, the CIGN layers can be used as a protective layer to decrease the sensitivity of the CIG layer to oxygen or moisture before the selenization step. In some embodiments, the CIGN layers can be used as an adhesion layer to improve the adhesion between the back contact layer and the absorber layer.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: October 30, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Guowen Ding, Hien Minh Huu Le, Guizhen Zhang
  • Patent number: 8294296
    Abstract: System, methods and apparatus for coupling photovoltaic arrays are disclosed. The apparatus may include a first input adapted to couple to a neutral line of a first photovoltaic array; a second input adapted to couple to a neutral line of a second photovoltaic array; a contactor configured to switchably couple the neutral line of a first photovoltaic array to the a neutral line of a second photovoltaic array, the contactor being remotely controllable.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: October 23, 2012
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Jack Arthur Gilmore, Eric Seymour
  • Patent number: 8273982
    Abstract: A photoelectric converting device comprises: a first electrode layer having conductivity; a metal filled dielectric layer formed on said first electrode layer and comprising a dielectric base material in which a plurality of micropores are formed, and a plurality of conductive fine metal bodies made of a metal material which fills said plurality of micropores formed in said dielectric base material; a photoelectric converting layer that is formed on said metal filled dielectric layer and is made of a photoelectric converting material; and a second electrode layer having conductivity that is formed on said photoelectric converting layer; each of said fine metal bodies including a protruding unit that protrudes from said dielectric base material to within said photoelectric converting layer, and being electrically connected to said first electrode layer; said photoelectric converting layer covering said protruding unit of each of said fine metal bodies.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: September 25, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Masayuki Naya, Jiro Tsukahara, Yuichi Tomaru
  • Patent number: 8268270
    Abstract: A coating solution for forming a light-absorbing layer of a chalcopyrite solar cell, including a hydrazine-coordinated Cu chalcogenide complex, a hydrazine-coordinated In chalcogenide complex and hydrazine-coordinated Ga chalcogenide complex dissolved in dimethylsulfoxide, the hydrazine-coordinated Cu chalcogenide complex being obtained by dissolving Cu or Cu2Se and a chalcogen in dimethylsulfoxide having hydrazine added, and adding a poor solvent to the resulting solution.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: September 18, 2012
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Masaru Kuwahara, Koichi Misumi, Hidenori Miyamoto
  • Publication number: 20120222742
    Abstract: A compound thin film solar cell of an embodiment includes: as a light-absorbing layer a semiconductor thin film which contains Cu, an element A (A is at least one element selected from a group consisting of Al, In and Ga) and Te, and has a chalcopyrite crystal structure, wherein a buffer layer that forms an interface with the light-absorbing layer is a compound which contains at least one element selected from Cd, Zn and a group consisting of In and Ga and at least one element selected from a group consisting of S, Se and Te, and has any crystal structure of a sphalerite structure, a wurtzite structure and a defect spinel structure, and a lattice constant “a” of the buffer layer with the sphalerite structure or a lattice constant “a” of the buffer layer at the time of converting the wurtzite structure or the defect spinel structure to the sphalerite structure is not smaller than 0.59 nm and not larger than 0.62 nm.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 6, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naoyuki Nakagawa, Shinya Sakurada, Yasutaka Nishida, Satoshi Itoh, Michihiko Inaba
  • Patent number: 8258000
    Abstract: A method for forming a thin film photovoltaic device is provided. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. A chalcopyrite material is formed overlying the first electrode layer. In a specific embodiment, the chalcopyrite material comprises a copper poor copper indium disulfide region. The copper poor copper indium disulfide region having an atomic ratio of Cu:In of about 0.95 and less. The method includes compensating the copper poor copper indium disulfide region using a sodium species to cause the chalcopyrite material to change from an n-type characteristic to a p-type characteristic. The method includes forming a window layer overlying the chalcopyrite material and forming a second electrode layer overlying the window layer.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: September 4, 2012
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8252621
    Abstract: A method of forming a Group IBIIIAVIA solar cell absorber, which includes a top surface region of less than or equal to 300 nm depth. The Ga/(Ga+In) molar ratio within the top surface region is in the range of 0.1-0.3. The Group IBIIIAVIA solar cell absorber is formed by reacting the layers of a multilayer material structure which includes a metallic film including at least Cu and In formed on a base, a separator layer including Se is formed on the metallic film, a metallic source layer substantially including Ga formed on the separator layer, and a cap layer substantially including Se formed on the source layer.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: August 28, 2012
    Assignee: SoloPower, Inc.
    Inventor: Bulent M. Basol
  • Publication number: 20120211074
    Abstract: CIGS absorber layers fabricated using coated semiconducting nanoparticles and/or quantum dots are disclosed. Core nanoparticles and/or quantum dots containing one or more elements from group 13 and/or IIIA and/or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and/or crystal phase, and/or size, and/or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticie, while the phase can be controlled by tuning the stochiomctiy, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).
    Type: Application
    Filed: May 7, 2012
    Publication date: August 23, 2012
    Inventors: Brian M. Sager, Dong Yu, Matthew R. Robinson
  • Patent number: 8247689
    Abstract: The present invention relates to a ruthenium complex and a photoelectric component using the same, and the ruthenium complex is represented by the following formula (I): RuL2(NCS)2Am??(I) wherein L, A and m are defined the same as the specification. The ruthenium complex of the present invention is suitable for Dye-Sensitized Solar Cell (DSSC). Hence, the photoelectric characteristics of the DSSC manufactured with the ruthenium complex of the present invention can be improved.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: August 21, 2012
    Assignee: Everlight USA, Inc.
    Inventors: Ching-Lin Chen, Ta-Chung Yin, Der-Gun Chou
  • Patent number: 8241943
    Abstract: A method of sodium doping in fabricating CIGS/CIS based thin film solar cells includes providing a shaped substrate member. The method includes forming a barrier layer over the surface region followed by a first electrode layer, and then a sodium bearing layer. A precursor layer of copper, indium, and/or gallium materials having an atomic ratio of copper/group III species no greater than 1.0 is deposited over the sodium bearing layer. The method further includes transferring the shaped substrate member to a second chamber and subjecting it to a thermal treatment process within an environment comprising gas-phase selenium species, followed by an environment comprising gas-phase sulfur species with the selenium species being substantially removed to form an absorber layer.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: August 14, 2012
    Assignee: Stion Corporation
    Inventors: Robert D. Wieting, Steven Aragon, Chester A. Farris, III
  • Patent number: 8242354
    Abstract: A solar cell includes abutting P-type and N-type doped regions in a contiguous portion of a polysilicon layer. The polysilicon layer may be formed on a thin dielectric layer, which is formed on a backside of a solar cell substrate (e.g., silicon wafer). The polysilicon layer has a relatively large average grain size to reduce or eliminate recombination in a space charge region between the P-type and N-type doped regions, thereby increasing efficiency.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: August 14, 2012
    Assignee: SunPower Corporation
    Inventor: David D. Smith
  • Patent number: 8236597
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. A copper layer is formed overlying the first electrode layer and an indium layer is formed overlying the copper layer to form a multi-layered structure. The method subjects at least the multi-layered structure to a thermal treatment process in an environment containing a sulfur bearing species to form a bulk copper indium disulfide material. The bulk copper indium disulfide material comprises one or more portions of copper indium disulfide material and a surface region characterized by a copper poor surface having a copper-to-indium atomic ratio of less than about 0.95:1.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: August 7, 2012
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Publication number: 20120192923
    Abstract: In one aspect of the present invention, a photovoltaic device is provided. The photovoltaic device includes a first semiconductor layer; a p+-type semiconductor layer; and an interlayer interposed between the first semiconductor layer and the p+-type semiconductor layer, wherein the interlayer includes magnesium and tellurium.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bastiaan Arie Korevaar, James William Bray
  • Patent number: 8222515
    Abstract: An object of the present invention is to provide an electrolyte for photoelectric conversion elements, and a photoelectric conversion element and a dye-sensitized solar cell using the electrolyte, wherein high energy conversion efficiency can be achieved while substantially not including iodine. The electrolyte for a photoelectric conversion element of the present invention includes an ionic liquid (A) and a carbon material (B). The carbon material (B) is a carbon material (B1) displaying a pH, measured by a pH measuring method specified in Japanese Industry Standard (JIS) Z8802, of from 2 to 6 and/or a boron-modified acetylene black (B2). A content of the carbon material (B) is from 10 to 50 parts by mass per 100 parts by mass of the ionic liquid (A).
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: July 17, 2012
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventors: Yoshimasa Imazaki, Tsukasa Maruyama
  • Patent number: 8217261
    Abstract: A method for fabricating a thin film solar cell includes providing a soda lime glass substrate comprising a surface region and a concentration of sodium oxide of greater than about 10 wt % and treating the surface region with one or more cleaning process, using a deionized water rinse, to remove surface contaminants having a particles size of greater than three microns. The method also includes forming a barrier layer overlying the surface region, forming a first molybdenum layer in tensile configuration overlying the barrier layer, and forming a second molybdenum layer in compressive configuration using a second process overlying the first molybdenum layer. Additionally, the method includes patterning the first molybdenum layer and the second molybdenum layer to form a lower electrode layer and forming a layer of photovoltaic material overlying the lower electrode layer. Moreover, the method includes forming a first zinc oxide layer overlying the layer of photovoltaic materials.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: July 10, 2012
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 8212143
    Abstract: A thin film solar cell including a substrate, a first conductive layer, a photoelectric conversion layer, a second conductive layer and a passivation layer is provided. The first conductive layer disposed on the substrate has a plurality of first openings, so as to divide the first conductive layer into bottom electrodes of a plurality of photovoltaic elements. The photoelectric conversion layer disposed on the first conductive layer has a plurality of second openings. The second conductive layer is disposed on the photoelectric conversion layer and electrically connected to the first conductive layer through the second openings. The passivation layer is disposed on the sidewall of the photoelectric conversion layer, so that the second conductive layer in the second openings is electrically isolated from the photoelectric conversion layer. A manufacturing method of the thin film solar cell is also provided.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: July 3, 2012
    Assignee: Auria Solar Co., Ltd.
    Inventors: Chin-Yao Tsai, Chien-Sheng Yang
  • Patent number: 8211736
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. A copper layer is formed overlying the first electrode layer and an indium layer is formed overlying the copper layer to form a multi-layered structure. The method subject at least the multi-layered structure to a thermal treatment process in an environment containing a sulfur bearing species to form a bulk copper indium disulfide material. The bulk copper indium disulfide material includes one or more portions of copper indium disulfide material characterized by a copper-to-indium atomic ratio of less than about 0.95:1 and a copper poor surface comprising a copper to indium atomic ratio of less than about 0.95:1.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: July 3, 2012
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8206616
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 26, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Patent number: 8203073
    Abstract: This invention relates to a front electrode/contact for use in an electronic device such as a photovoltaic device. In certain example embodiments, the front electrode of a photovoltaic device or the like includes a multilayer coating including at least one transparent conductive oxide (TCO) layer (e.g., of or including a material such as tin oxide, ITO, zinc oxide, or the like) and/or at least one conductive substantially metallic IR reflecting layer (e.g., based on silver, gold, or the like). In certain example instances, the multilayer front electrode coating may include one or more conductive metal(s) oxide layer(s) and one or more conductive substantially metallic IR reflecting layer(s) in order to provide for reduced visible light reflection, increased conductivity, cheaper manufacturability, and/or increased infrared (IR) reflection capability. At least one of the surfaces of the front glass substrate may be textured in certain example embodiments of this invention.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: June 19, 2012
    Assignee: Guardian Industries Corp.
    Inventors: Yiwei Lu, Willem den Boer, David Lerin, Scott V. Thomsen
  • Patent number: 8198122
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. A copper layer is formed overlying the first electrode layer and an indium layer is formed overlying the copper layer to form a multi-layered structure. The method subjects at least the multi-layered structure to a thermal treatment process in an environment containing a sulfur bearing species to form a bulk copper indium disulfide material. The bulk copper indium disulfide material comprises one or more portions of copper indium disulfide material and a copper poor surface region characterized by a copper-to-indium atomic ratio of less than about 0.95:1.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: June 12, 2012
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8198117
    Abstract: Methods and devices are provided for absorber layers formed on foil substrate. In one embodiment, a method of manufacturing photovoltaic devices may be comprised of providing a substrate comprising of at least one electrically conductive aluminum foil substrate, at least one electrically conductive diffusion barrier layer, and at least one electrically conductive electrode layer above the diffusion barrier layer. The diffusion barrier layer may prevent chemical interaction between the aluminum foil substrate and the electrode layer. An absorber layer may be formed on the substrate. In one embodiment, the absorber layer may be a non-silicon absorber layer. In another embodiment, the absorber layer may be an amorphous silicon (doped or undoped) absorber layer. Optionally, the absorber layer may be based on organic and/or inorganic materials.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: June 12, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Craig R. Leidholm, Brent Bollman, James R. Sheats, Sam Kao, Martin R. Roscheisen
  • Patent number: 8197885
    Abstract: A method for producing a metal article according to one embodiment may include: Providing a supply of a sodium/molybdenum composite metal powder; compacting the sodium/molybdenum composite metal powder under sufficient pressure to form a preformed article; placing the preformed article in a sealed container; raising the temperature of the sealed container to a temperature that is lower than a sintering temperature of molybdenum; and subjecting the sealed container to an isostatic pressure for a time sufficient to increase the density of the article to at least about 90% of theoretical density.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: June 12, 2012
    Assignee: Climax Engineered Materials, LLC
    Inventors: Dave Honecker, Christopher Michaluk, Carl Cox, James Cole
  • Patent number: 8198123
    Abstract: Improved methods and apparatus for forming thin-film layers of semiconductor material absorber layers on a substrate web. According to the present teachings, a semiconductor layer may be formed in a multi-zone process whereby various layers are deposited sequentially onto a moving substrate web.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: June 12, 2012
    Assignee: Global Solar Energy, Inc.
    Inventors: Jeffrey S. Britt, Scott Wiedeman
  • Publication number: 20120138136
    Abstract: This invention describes a semiconductor material of general formula (I) Me12Me21-xMe3xMe4(C11-yC2y)4, in which x stands for a numeric value from 0 to 1, and y stands for a numeric value of 0 to 1, as well as its use as an absorber material in a solar cell. The metal Mel is a metal which is selected from the metals in group 11 of the periodic table of the elements (Cu, Ag or Au). The metals Me2 and Me3 are selected from the elements of the 12th group of the periodic table of elements (Zn, Cd & Hg). The metal Me4 is a metal which is selected from the 4th main group of the periodic table of elements (C, Si, Ge, Sn and Pb). The non-metals C1 and C2 are selected from the group of chalcogenides (S, Se and Te).
    Type: Application
    Filed: July 15, 2009
    Publication date: June 7, 2012
    Inventors: Dieter Meissner, Mare Altosaar, Enn Mellikov, Jaan Raudoja, Kristi Timmo
  • Patent number: 8193028
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate comprising a surface region, forming a first electrode layer overlying the surface region, forming a copper layer overlying the first electrode layer and forming an indium layer overlying the copper layer to form a multi-layered structure. The multi-layered structure is subjected to a thermal treatment process in an environment containing a sulfur bearing species to forming a copper indium disulfide material. The copper indium disulfide material comprising a copper-to-indium atomic ratio ranging from about 1.2:1 to about 2:1 and a thickness of substantially copper sulfide material having a copper sulfide surface region. The thickness of the copper sulfide material is selectively removed to expose a surface region having a copper poor surface comprising a copper to indium atomic ratio of less than about 0.95:1.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: June 5, 2012
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8193442
    Abstract: CIGS absorber layers fabricated using coated semiconducting nanoparticles and/or quantum dots are disclosed. Core nanoparticles and/or quantum dots containing one or more elements from group IB and/or IIIA and/or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and/or crystal phase, and/or size, and/or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticle, while the phase can be controlled by tuning the stochiometry, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: June 5, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Brian M. Sager, Dong Yu, Matthew R. Robinson
  • Patent number: 8193443
    Abstract: The present invention relates to a photovoltaic cell, a method of manufacturing such photovoltaic cell, and to uses of such cell.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 5, 2012
    Assignees: Sony Deutschland GmbH, Sony Corporation
    Inventors: Michael Duerr, Gabriele Nelles, Akio Yasuda, Masahiro Morooka, Yusuke Suzuki, Kazuhiro Noda
  • Patent number: 8188367
    Abstract: A method of forming a doped Group IBIIIAVIA absorber layer for solar cells by reacting a partially reacted precursor layer with a dopant structure. The precursor layer including Group IB, Group IIIA and Group VIA materials such as Cu, Ga, In and Se are deposited on a base and partially reacted. After the dopant structure is formed on the partially reacted precursor layer, the dopant structure and partially reacted precursor layer is fully reacted. The dopant structure includes a dopant material such as Na.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: May 29, 2012
    Assignee: SoloPower, Inc.
    Inventor: Bulent M. Basol
  • Patent number: 8182720
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 22, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Patent number: 8182721
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 22, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Publication number: 20120118386
    Abstract: A p-type transparent conductive oxide and a solar cell containing the p-type transparent conducting oxide, wherein the p-type transparent conductive oxide includes a molybdenum trioxide doped with an element having less than six valence electrons, the element is selected from the group consisting of alkali metals, alkaline earth metals, group III elements, group IV, group V, transition elements and their combinations. Doping an element having less than six valence electron results in hole number increase, and thus increasing the hole drift velocity, and making Fermi level closer to the range of p-type materials. Hence, a p-type transparent conductive material is generated. This p-type transparent conducting oxide not only has high electron hole drift velocity, low resistivity, but also reaches a transmittance of 88% in the visible wavelength range, and therefore it is very suitable to be used in solar cells.
    Type: Application
    Filed: May 10, 2011
    Publication date: May 17, 2012
    Inventors: Han-Yi CHEN, Chia-Hsiang Chen, Huan-Chieh Su, Kuo-Liang Liu, Tri-Rung Yew