Etching Inorganic Substrate Patents (Class 216/96)
  • Patent number: 7497960
    Abstract: A method for manufacturing a filter is provided which can easily manufacture the filter that has both excellent anti-corrosion properties and anti-abrasion properties. In the method, a first substrate is produced that has a plurality of holes, a ceramic layer will be formed by depositing extremely small particles of ceramic material on one side of the first substrate, and a filter having a plurality of holes will be obtained. The manufactured filter is composed of ceramic material, and has excellent anti-abrasion and anti-corrosion properties.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: March 3, 2009
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventor: Hiroto Sugahara
  • Publication number: 20090047520
    Abstract: Disclosed herein are a graphene hybrid material and a method for preparing the graphene hybrid material, the graphene hybrid material comprising: a matrix having lattice planes disconnected on a surface thereof; and layers of graphene which are epitaxially grown along the lattice planes disconnected on the surface of the matrix such that the layers of graphene are oriented perpendicularly to the matrix, and which are spaced apart from each other and layered on the matrix in the same shape. The graphene hybrid material can be usefully used in the fields of next-generation semiconductor devices, biosensors, electrochemical electrodes and the like.
    Type: Application
    Filed: August 14, 2008
    Publication date: February 19, 2009
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jae Kap LEE, Seung Cheol LEE, Phillip JOHN, Wook Seong LEE, Jeon Kook LEE
  • Patent number: 7491341
    Abstract: Methods of forming electrospray ionization emitter tips are disclosed herein. In one embodiment, an end portion of a capillary tube can be immersed into an etchant, wherein the etchant forms a concave meniscus on the outer surface of the capillary. Variable etching rates in the meniscus can cause an external taper to form. While etching the outer surface of the capillary wall, a fluid can be flowed through the interior of the capillary tube. Etching continues until the immersed portion of the capillary tube is completely etched away.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: February 17, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Ryan T. Kelly, Jason S. Page, Keqi Tang, Richard D. Smith
  • Patent number: 7482052
    Abstract: A laser processing method where laser beam for processing is irradiated on a processing object and the laser beam for processing directly removes a part of the processing object. The processing object is made of a glass substrate, metal thin film having high absorption to laser beam for processing is formed on a surface of glass substrate, into which laser beam for processing is made incident, the laser beam for processing is irradiated from a surface of metal thin film, and matter is directly removed by irradiation of laser beam onto the processing object in order to form a region finer than an irradiation region of laser beam for processing on the processing object.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: January 27, 2009
    Assignees: Ricoh Company, Ltd., Riken
    Inventors: Yasufumi Yamada, Katsumi Midorikawa, Hiroshi Kumagai
  • Publication number: 20080308524
    Abstract: An electrochemical fabrication process for producing three-dimensional structures from a plurality of adhered layers is provided where each layer comprises at least one structural material (e.g. nickel) and at least one sacrificial material (e.g. copper) that will be etched away from the structural material after the formation of all layers have been completed. A copper etchant containing chlorite (e.g. Enthone C-38) is combined with a corrosion inhibitor (e.g. sodium nitrate) to prevent pitting of the structural material during removal of the sacrificial material. A simple process for drying the etched structure without the drying process causing surfaces to stick together includes immersion of the structure in water after etching and then immersion in alcohol and then placing the structure in an oven for drying.
    Type: Application
    Filed: March 11, 2008
    Publication date: December 18, 2008
    Inventor: Gang Zhang
  • Patent number: 7442323
    Abstract: A composition comprising a solution of potassium monopersulfate having an active oxygen content of from about 3.4% to about 6.8% and a process for its preparation including neutralization with an alkaline material is disclosed.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: October 28, 2008
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Robert Jeffrey Durante, Harvey James Bohn, Jr.
  • Publication number: 20080254291
    Abstract: Disclosed is a method to construct a device that includes a plurality of nanowires (NWs) each having a core and at least one shell. The method includes providing a plurality of radially encoded NWs where each shell contains one of a plurality of different shell materials; and differentiating individual ones of the NWs from one another by selectively removing or not removing shell material within areas to be electrically coupled to individual ones of a plurality of mesowires (MWs). Also disclosed is a nanowire array that contains radially encoded NWs, and a computer program product useful in forming a nanowire array.
    Type: Application
    Filed: February 2, 2006
    Publication date: October 16, 2008
    Inventors: Andre Dehon, Charles M. Lieber, John E. Savage, Eric Rachlin
  • Publication number: 20080245769
    Abstract: A method of making nanoparticles includes reacting a first material powder with a second material vapor to form a surface coating on particles of the first material powder, and selectively removing the first material powder to convert the surface coating to third material nanoparticles.
    Type: Application
    Filed: July 17, 2007
    Publication date: October 9, 2008
    Inventor: Partha S. Dutta
  • Patent number: 7429337
    Abstract: The invention relates to a method for removing an area of a layer of a component consisting of metal or a metal compound. According to prior art, corrosion products of a component are removed in a first step by applying a molten mass or by heating in a voluminous powder bed. This requires high temperatures or a large amount of space. The inventive method for removing corrosion products of a component is characterized in that a cleaning agent is applied locally, which removes the corrosion products by means of a gaseous reaction product.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: September 30, 2008
    Assignees: Siemens Aktiengesellschaft, Diffusion Alloys, Ltd.
    Inventors: Norbert Czech, Andre Jeutter, Adrian Kempster, Ralph Reiche, Rolf Wilkenhöner
  • Patent number: 7422696
    Abstract: Multicomponent nanorods having segments with differing electronic and/or chemical properties are disclosed. The nanorods can be tailored with high precision to create controlled gaps within the nanorods or to produce diodes or resistors, based upon the identities of the components-making up the segments of the nanorods. Macrostructural composites of these nanorods also are disclosed.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: September 9, 2008
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Lidong Qin, Sungho Park, Ling Huang, Sung-Wook Chung
  • Publication number: 20080210900
    Abstract: The present invention relates to a wet etching composition including a sulfonic acid, a phosphonic acid, a phosphinic acid or a mixture of any two or more thereof, and a fluoride, and to a process of selectively etching oxides relative to nitrides, high-nitrogen content silicon oxynitride, metal, silicon or silicide. The process includes providing a substrate comprising oxide and one or more of nitride, high-nitrogen content silicon oxynitride, metal, silicon or silicide in which the oxide is to be etched; applying to the substrate for a time sufficient to remove a desired quantity of oxide from the substrate the etching composition; and removing the etching composition, in which the oxide is removed selectively.
    Type: Application
    Filed: April 25, 2006
    Publication date: September 4, 2008
    Inventors: William Wojtczak, Sian Collins
  • Patent number: 7416681
    Abstract: An etching solution for a multiple layer of copper and molybdenum includes: about 5% to about 30% by weight of a hydrogen peroxide; about 0.5% to about 5% by weight of an organic acid; about 0.2% to about 5% by weight of a phosphate; about 0.2% to about 5% by weight of a first additive having nitrogen; about 0.2% to about 5% by weight of a second additive having nitrogen; about 0.01% to about 1.0% by weight of a fluoric compound; and de-ionized water making a total amount of the etching solution 100% by weight.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: August 26, 2008
    Assignees: LG Display Co., Ltd., Dong-Woo Fine Chem Co., Ltd.
    Inventors: Seong-Su Kim, Yong-Suk Choi, Gee-Sung Chae, Gyoo-Chul Jo, Oh-Nam Kwon, Kyoung-Mook Lee, Yong-Sup Hwang, Seung-Yong Lee
  • Patent number: 7399430
    Abstract: It is an object of the present invention to control damage of a phosphor caused by an etching solution. Disclosed is a method of manufacturing a phosphor having the steps of: (a) crushing phosphor particles via a crushing treatment process, and (b) surface-treating phosphor particles dispersed in a solvent by adding an etching solution via a surface treatment process, wherein an adding speed of the etching solution is in a range of 1.2×10?16-7.0×10?15 mol/min. per 1 m2 of specific surface area of the phosphor particles.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: July 15, 2008
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventor: Kazuyoshi Goan
  • Patent number: 7396477
    Abstract: An exemplary method for manufacturing a thermal interface material includes the steps of: providing a first substrate having a first surface and an opposite second substrate having an opposite second surface spaced apart a predetermined distance; forming a number of carbon nanotubes from one of the first the second surfaces; forming a composite material by filling interstices between the carbon nanotubes with a liquid state base material; curing the liquid state base material filled in the interstices between the carbon nanotubes; and removing the first and the second substrates from the composite material.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: July 8, 2008
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Bor-Yuan Hsiao
  • Publication number: 20080156592
    Abstract: An elevator load bearing member assembly includes at least one traction enhancing surface (46) on a jacket (44). In one example, a mechanical removal process is used to strip away at least some of an amide-rich layer from the surface (46) after the jacket has been extruded onto tension members (42). In another example, a chemical removal process is used. Another disclosed example includes disrupting the surface.
    Type: Application
    Filed: February 9, 2005
    Publication date: July 3, 2008
    Inventors: Mark S. Thompson, John P. Wesson, William A. Veronesi, Hugh J. O'Donnell, John Pitts, William C. Perron, Ary O. Mello, Kathryn Rauss
  • Patent number: 7384486
    Abstract: A method for cleaning a process chamber in such a manner that chamber-cleaning chemicals or agents are incapable of remaining in the chamber after cleaning and chemically interfering with semiconductor fabrication or other processes subsequently carried out in the chamber. The method includes providing a repellant coating layer having a hydrophobic or hydrophilic polarity on the interior surfaces of a process chamber and using a cleaning agent having a polarity opposite that of the repellant coating layer to clean the chamber. Accordingly, the cleaning agent removes post-processing chemical residues from the interior chamber walls and other surfaces and is incapable of adhering to the surfaces and remaining in the chamber upon commencement of a subsequent process carried out in the chamber.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: June 10, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Ho Yang, Liang-Gei Yao, Shih-Chang Chen
  • Patent number: 7368065
    Abstract: Compositions and methods are provided for preparing a metal substrate having a uniform textured surface with a plurality of indentations with a diameter in the nanometer and micrometer range. The textured surface is produced by exposing the substrate to an etching fluid comprising a hydrohalic acid and a mixture of a hydrohalic acid and an oxyacid, a chloride containing compound, and an oxidant. The etching solution can be used at ambient temperature. This textured surface enhances adherence of coatings or cells onto the textured surface, improves the retention of proteins on the surface, and encourages bone in-growth.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: May 6, 2008
    Assignee: DePuy Products, Inc.
    Inventors: Xiaofan Yang, Panjian Li, Todd Smith
  • Publication number: 20080067145
    Abstract: A method of recycling dummy wafer is provided. The dummy wafer has at least one low-k dielectric material layer formed thereon. A treatment process is performed to the low-k dielectric material layer on the dummy wafer so that a component or impurity in the low-k dielectric material layer reacts to form a volatile substance. A wet etching process is performed to remove the low-k dielectric material layer.
    Type: Application
    Filed: September 14, 2006
    Publication date: March 20, 2008
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Chun Wang, Chia-Pin Lee, Chun-Yuan Wu, Hsien-Che Teng, Hsin-Hsing Chen, Yu-Cheng Lin
  • Patent number: 7344998
    Abstract: In order to use an etching solution of less complicated composition for recovering used wafers, embodiments of the present invention provide a recovering method, and also provide a kind of wafer, which is used as a process control wafer or dummy wafer, and fabrication methods. In one embodiment, a wafer-recovering method comprises providing a first wafer, wherein the first wafer has a base, a first conductive layer on the base, and a second conductive layer on the first conductive layer. The method further comprises removing the first and second conductive layers with an acidic solution to obtain a second wafer; and washing the second wafer with a liquid. The second conductive layer is formed on the first conductive layer in a deposition process, and the first conductive layer is more easily removed by the acidic solution than the second conductive layer.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: March 18, 2008
    Assignee: Mosel Vitelic, Inc.
    Inventors: Chun-Te Lin, Ta-Te Chen
  • Patent number: 7341681
    Abstract: In a method for manufacturing an optical fiber probe in which an optical fiber is formed as an optical fiber probe by etching a tip section and sharpening a core region of the optical fiber, the optical fiber is a polarization maintaining optical fiber including the core region, a stress-applying region, and a clad region. The optical fiber probe is formed by mechanical-grinding of the edge of the optical fiber into a sharpened shape so that the core region is located at the tip of a sharpened portion, and by dipping the formed edge of the optical fiber in an etchant for further sharpening the core region. Accordingly, a new optical fiber probe both with a high transmission efficiency and with a large polarization degree is obtained.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: March 11, 2008
    Assignee: National Institute for Materials Science
    Inventors: Tadashi Mitsui, Hidetoshi Oikawa
  • Patent number: 7329365
    Abstract: An etchant for removing an indium oxide layer includes sulfuric acid as a main oxidizer, an auxiliary oxidizer such as H3PO4, HNO3, CH3COOH, HClO4, H2O2, and a Compound A that is obtained by mixing potassium peroxymonosulfate (2KHSO5), potassium bisulfate (KHSO4), and potassium sulfate (K2SO4) together in the ratio of 5:3:2, an etching inhibitor comprising an ammonium-based material, and water. The etchant may remove desired portions of the indium oxide layer without damage to a photoresist pattern or layers underlying the indium oxide layer.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: February 12, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Je Cho, Seung-Yong Lee, Joon-Woo Lee, Jae-Yeon Lee, Seung-Hwan Chon, Yong-Suk Choi, Young-Chul Park, Jin-Su Kim, Kyu-Sang Kim, Dong-Uk Choi, Kwan-Tack Lim
  • Patent number: 7309449
    Abstract: A substrate processing enables etching of a barrier metal film at around room temperature without application of a mechanical load and without excessive etching of a necessary portion of copper. The substrate processing flattens a copper film and a barrier metal film, both exposed on a surface of a substrate, by using an etching liquid capable of adjusting the etching rate ratio between the copper film and the barrier metal film.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: December 18, 2007
    Assignee: Ebara Corporation
    Inventors: Haruko Ono, Sachiko Takeda, Ichiro Katakabe
  • Publication number: 20070284336
    Abstract: It is an objective to control the occurrence of the disorder of a far-field pattern and of an optical axial shift. A manufacturing method of a semiconductor laser device has the step for preparing a semiconductor substrate which has growth of a multi-layer including an active layer, the step for forming a mask over the growth of a multi-layer, and a step for forming a stripe-shaped ridge by dry etching and wet etching. A structure stacking a p-type AlGaInP layer, an etch-stop layer, a p-type Alx=0.7GaInP layer, a p-type Alx=0.6GaInP layer, a p-type GaAs layer, in order, over the active layer is taken in order to make the tailing part created in the dry etching process smaller by wet etching. The tailing part is composed of a p-type Alx=0.7GaInP layer including a high mixed crystal ratio of aluminum. Therefore, the p-type Alx=0.7GaInP layer is etched faster than the p-type Alx=0.
    Type: Application
    Filed: January 31, 2007
    Publication date: December 13, 2007
    Inventors: Hiroshi Hamada, Kazunori Saitoh
  • Publication number: 20070278183
    Abstract: A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The substrate is exposed to a buffered fluoride etch solution which undercuts the silicon to provide lateral shelves when patterned in the <100> direction. The resulting structure includes an undercut feature when patterned in the <100> direction.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Inventors: Whonchee Lee, Janos Fucsko, David H. Wells
  • Patent number: 7303600
    Abstract: An unexpanded perlite ore polishing composition is shown. The composition comprises base material having grains of unexpanded perlite ore of a selected distribution of particle sizes which undergo fracturing of the grains as a function of an abrasive force applied to the base material. The selected distribution of particle sizes includes a significant volume of grains of unexpanded perlite ore having a (d90) particle size in a range of about 101 to about 229 ?m. The base material is responsive to an abrasive force being applied thereto during polishing resulting in continued fracturing of the grains of unexpanded perlite ore to yield a final polishing composition having a sufficiently low level of abrasiveness under said abrasive force making it suitable for use in polishing. Compositions for polishing acrylic dentures and CRT tube surfaces using the unexpanded perlite ore polishing composition and methods for polishing the same are also shown.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: December 4, 2007
    Assignee: Advanced Minerals Corporation
    Inventors: John S. Roulston, Dean Klein
  • Patent number: 7291283
    Abstract: A combined wet etching method for stacked films which is capable of performing etching processes in a collective manner while controlling an amount of side-etching on each of stacked films and of making uniform side edges. In the wet etching method, two or more types of etching methods are performed in combination, on stacked films containing first and second films being deposited sequentially on a substrate and each having a different film property. The two or more types of wet etching methods include, at least, a first wet etching method in which side-etching on the first film is facilitated more than side-etching on the second film and a second wet etching method in which side-etching on the second film is facilitated more than side-etching on the first film.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: November 6, 2007
    Assignee: NEC LCD Technologies, Ltd.
    Inventors: Tadanori Uesugi, Shigeru Kimura
  • Patent number: 7279765
    Abstract: A pixel electrode employs a transparent electrode made from indium-zinc-oxide (IZO) that is capable of preventing damage and bending thereof. In a liquid crystal display device containing pixel electrodes, the transparent electrode is made from indium-zinc-oxide (IZO) having an amorphous structure so that it can be etched within a short period of time with a low concentration of etchant. Accordingly, it is possible to prevent damage and bending of the transparent electrode upon the patterning thereof.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: October 9, 2007
    Assignee: LG.Philips LCD Co., Ltd.
    Inventors: You Shin Ahn, Hu Kag Lee
  • Patent number: 7276367
    Abstract: An apparatus and process for monitoring migratory cell proliferation with restricted migration on a substrate includes providing a substrate, coating the substrate with extracellular matrix, plating cells suspended in cell culture media on extracellular matrix, and placing intersecting channels across the extracellular matrix components by removing the extracellular matrix components from the channels to isolate islands of the extracellular matrix components on the substrate. When the cells are immersed with a fluid, migration of the cells is confined to the isolated islands of the extracellular matrix components, permitting long-term observation of a migratory population.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: October 2, 2007
    Assignee: The United States of America as represented by the Secretary of the Department of Health and Human Services
    Inventors: Rea Ravin, James V. Sullivan, Daniel Hoeppner, David W. Munno, Ron McKay
  • Patent number: 7261827
    Abstract: An end portion of an optical fiber element 11 is dipped into an etchant to shape that portion of the fiber element immersed in said etchant into a coaxial reduced-diameter portion by etching while causing that portion of the fiber element where the etchant rising to a certain height above the level surface of the etchant due to surface tension into a conical tapered surface portion which is formed between the reduced-diameter portion and un-etched portion of the fiber element, and subsequently thereafter, the reduced-diameter portion is cut to have a very short length thereof remained.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: August 28, 2007
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Kenji Ootsu, Keiji Murakami, Tomishige Tai
  • Patent number: 7238295
    Abstract: A regeneration process is disclosed for an etching solution composed of a phosphoric acid solution and used in etching silicon nitride films in an etch bath. As a result of the etching, the etching solution contains a silicon compound. According to the regeneration process, the etching solution with a silicon compound contained therein is taken out of the etch bath. Water is then added to the taken-out etching solution to lower a concentration of phosphoric acid in the etching solution to 80 to 50 wt. %. By the lowing of the concentration of phosphoric acid, the silicon compound is caused to precipitate. The thus-precipitated silicon compound is removed from the etching solution. An etching process making use of the regeneration process and an etching system suitable for use in practicing the regeneration process and etching process are also disclosed.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: July 3, 2007
    Assignee: m·FSI Ltd.
    Inventors: Nobuhiko Izuta, Mitsugu Murata
  • Publication number: 20070138129
    Abstract: A method for manufacturing carbon nanotube field emission includes the steps of: providing a substrate (110) with a metallic layer (130) thereon; defining a plurality of holes (131) in the metallic layer; oxidizing the metallic layer to form a metallic oxide layer (132) thereon; removing portions of the metallic oxide layer in the plurality of holes so as to expose corresponding portions of the metallic layer; forming a metal-salt catalyst layer (580) on the exposed portions of the metallic layer in the plurality of holes; and growing carbon nanotubes (690) on the substrate in the plurality of holes.
    Type: Application
    Filed: August 29, 2006
    Publication date: June 21, 2007
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Tsai-Shih Tung
  • Patent number: 7226513
    Abstract: This invention provides a cleaning method of silicon wafer for obtaining a silicon wafer in which micro roughness thereof under spatial frequency of 20/?m is 0.3 to 1.5 nm3 in terms of power spectrum density, by passing a process of oxidizing the silicon wafer with ozonized water and a process of cleaning said oxidized silicon wafer with hydrofluoric acid. Consequently, it is possible to remove surface adhering pollutant such as particles and metallic foreign matter with the surface structure of silicon wafer flattened up to atomic level by annealing maintained.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: June 5, 2007
    Assignee: Toshiba Ceramics Co., Ltd.
    Inventors: Hisatsugu Kurita, Manabu Hirasawa, Hiromi Nagahama, Koji Izumome, Takao Ino, Jyunsei Yamabe, Naoya Hayamizu, Naoaki Sakurai
  • Patent number: 7192489
    Abstract: A method for removing polymer containing residues from a semiconductor wafer including metal containing features including providing a semiconductor wafer having a process surface including metal containing features said process surface at least partially covered with polymer containing residues; and, subjecting the semiconductor wafer to a series of cleaning steps including sequentially exposing the process surface to at least one primary solvent and at least one intermediate solvent the at least one intermediate solvent comprising an ammonium nitrate containing solution.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: March 20, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Hsin Lo, Fei-Yun Chen
  • Patent number: 7192885
    Abstract: A method for texturing surfaces of silicon wafers comprising the steps of dipping the silicon wafers in an etching solution of water, concentrated hydrofluoric acid and concentrated nitric acid and setting a temperature for the etching solution. The etching solution comprises, in percent, 20% to 55% water, 10% to 40% concentrated hydrofluoric acid and 20% to 60% concentrated nitric acid and the temperature of the etching solution is between 0 and 15 degrees Celsius.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: March 20, 2007
    Assignee: Universitat Konstanz
    Inventors: Alexander Hauser, Ihor Melnyk, Peter Fath
  • Patent number: 7169315
    Abstract: A method of producing a reflector sheet, which method comprises treating an Al alloy sheet to increase the total reflectance of a surface of the sheet for use as a lighting reflector by bringing the sheet into contact with an acid or alkaline fluid that dissolves aluminium metal, said fluid having a viscosity of less than 0.01 Pa·s, under conditions to remove from 10 nm to 2000 nm of metal from the surface, and cutting or forming the treated Al alloy sheet into the shape of a reflector sheet.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: January 30, 2007
    Assignee: Novelis, Inc.
    Inventors: Robin Christopher Furneaux, Barry Roy Ellard
  • Patent number: 7163897
    Abstract: The invention provides a method of assaying at least one element in a material including silicon. The method includes the steps of decomposing a portion of the material with an etching agent to form a solution containing hexafluorosilicic acid and at least one element to be assayed, heating the solution to a temperature sufficient to transform a substantial portion of the hexafluorosilicic acid into silicon tetrafluoride and to cause at least some of the silicon tetrafluoride to evaporate, such that a solution for assaying is obtained in which the silicon content is reduced while and the elements to be assayed are conserved; and assaying at least one element contained in the solution. The invention is applicable to the field of manufacturing substrates or components for optics, electronics, or optoelectronics, and in particular to the field of quality control.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: January 16, 2007
    Assignee: S.O.I.Tec Silicon on Insulator Technologies S.A.
    Inventor: Laurent Viravaux
  • Patent number: 7157015
    Abstract: A method of manufacturing a substrate 5 with a plurality of concave portions 3 according to the invention includes the steps of forming a mask 6 on the substrate 5, forming a plurality of initial holes 61 on the mask 6 by means of a physical method such as blast processing or irradiation with laser beams, and forming the plurality of concave portions in the substrate 5 by subjecting the mask 6 with the plurality of initial holes 61 to an etching process. In case of carrying out the blast processing, glass beads whose average diameter is in the range of 50 to 100 ?m are used as blast media.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: January 2, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Nobuo Shimizu, Hideto Yamashita
  • Patent number: 7141179
    Abstract: The invention describes a method to facilitate the use of low-sensitivity monitoring equipment for detecting and monitoring defects on the surface of semiconductor wafers. The method includes the use of a hydrofluoric acid solution for increasing the dimensions of a defect and the application of a thin-film layer of a metal, such as titanium, for improving the appearance of the defect such that the defect dimensions increase to above 0.1 nanometer, the detection threshold for economical low-sensitivity monitoring equipment.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: November 28, 2006
    Assignee: Macronix International Co., Ltd.
    Inventors: Wu-An Weng, Wang-Tsai Hsu, Kun-Yu Liu, Yi-Chieh Lai
  • Patent number: 7138066
    Abstract: A method of surface treating heat treated members to remove oxide scale. The heat treated members are subjected to a staged series of discrete chemical and physical cleaning steps yielding a substantially scale-free surface readily adaptable for subsequent application of protective coatings.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: November 21, 2006
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Leonid C. Lev, Michael J. Lukitsch, Yang-Tse Cheng, Anita M. Weiner, Robert F. Paluch
  • Patent number: 7138069
    Abstract: A new surface finishing process for stainless steel where beautiful, bright and milky white coloured surface is obtainable even for such grades as high carbon containing 13 chromium steel and high sulfur containing free cutting stainless steel is disclosed. After removing the surface scale, (1) immerse the stainless steel into the 1st treating solution containing nitric acid: 5–40 g/l, hydrofluoric acid: 2–10 g/l and Fe(III) ion: 15–40 g/l for 5–180 sec., then rinse in water, (2) and successesively immerse into the 2nd treating solution containing nitric acid: 120–250 g/l, Fe(III) ion: 15–40 g/l for 30–300 sec., then rinse in water.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: November 21, 2006
    Assignee: Parker Corporation
    Inventors: Eiji Sato, Youichi Nakamura
  • Patent number: 7128843
    Abstract: A process for fabricating monolithic membrane structures having air gaps is disclosed, comprising the steps of: providing a wafer; depositing and patterning a protective layer on the wafer; providing a trench in the wafer; depositing and patterning a metal in the trench; depositing and patterning a sacrificial layer on the metal; depositing and patterning a membrane pad on the sacrificial layer; providing a polymeric film on the protective layer and sacrificial layer, wherein part of the polymeric film has a tensile stress; and releasing part of the polymeric film from the protective layer and sacrificial layer, wherein the tensile stress of a portion of the polymeric film releases the portion of the polymeric film from the wafer and generates the air gap.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: October 31, 2006
    Assignee: HRL Laboratories, LLC
    Inventor: Sarabjit Mehta
  • Patent number: 7115193
    Abstract: Provided is a sputtering target, backing plate or apparatus inside a sputtering device in which an electrical discharge machining mark is formed on the face to which unwanted films during sputtering are deposited, and the electrical discharge machining mark is formed from numerous inclined protrusions having a depression angle of less than 90°. When necessary, chemical etching is further performed to the portions subject to such electrical discharge machining. Thereby, the separation and flying of deposits arising from the face to which unwanted films of the target, backing plate and apparatus inside the sputtering device are deposited can be prevented.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: October 3, 2006
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventor: Hideyuki Takahashi
  • Patent number: 7112530
    Abstract: A method of forming a contact hole in a semiconductor device, by which a PMD layer as an insulating interlayer is prevented from being overetched by wet cleaning for removing polymer and photoresist after forming a contact hole perforating the PMD layer in a manner of adjusting temperature and concentration of an NC-2 solution for the wet cleaning. The present invention includes the steps of forming a premetal dielectric layer on a semiconductor substrate, forming a contact hole perforating the premetal dielectric layer, and cleaning the substrate using an NC-2 cleaning solution at a temperature equal to or lower than about 55° C.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: September 26, 2006
    Assignee: Dongu Electronics Co., Ltd.
    Inventor: Byoung Yoon Seo
  • Patent number: 7108813
    Abstract: An improved two-step replication process for fabrication of porous metallic membranes is provided. A negative of a porous non-metallic template is made by infiltration of a liquid precursor into the template, curing the precursor to form a solid negative, and removing the template to expose the negative. Metal is deposited to surround the exposed negative. Removal of the negative provides a porous metallic membrane having pores which replicate the pores of the original template membrane. The negative is kept immersed in a liquid at all times between removing the template and depositing the metal. This immersion eliminates damage to the negative that would be incurred in drying the negative out between these processing steps. Another aspect of the invention is metallic membranes prepared according to the preceding method. For example, metallic membranes having pores smaller on one side than on the other side of the membrane are provided.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: September 19, 2006
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Sangkyun Kang, Yong-Il Park, Friedrich B. Prinz, Suk-Won Cha, Yuji Saito, Ali Farvid, Pei-Chen Su
  • Patent number: 7097783
    Abstract: A process for detecting an aluminum-based material deposited onto a titanium-based gas turbine engine component during engine operation is disclosed. The process comprises immersing at least a portion of the titanium-based component, which has been subjected to engine operation, into an acid solution to form an etched component. The acid solution comprises sodium fluoride, sulphuric acid and water. The etched component may then be removed from the solution and visually inspected for dark areas in contrast to light areas, the dark areas indicating deposited aluminum-based material.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: August 29, 2006
    Assignee: General Electric Company
    Inventor: Peter Wayte
  • Patent number: 7083741
    Abstract: A device and process for the wet-chemical treatment of silicon using an etching liquid that contains water, nitric acid and hydrofluoric acid. The etching liquid is activated by introducing nitrogen oxide (NOx) into the etching liquid, before being used for the wet-chemical treatment of silicon. The device consists of a first vessel in which silicon is subjected to a wet-chemical treatment with the aid of an etching liquid, a second vessel in which fresh etching liquid is held ready, and a connecting line between the first vessel and the second vessel, through which nitrogen oxides (NOx) formed in the first vessel during the wet-chemical treatment are passed to the second vessel.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: August 1, 2006
    Assignee: Siltronic AG
    Inventors: Maximilian Stadler, Günter Schwab, Helmut Franke
  • Patent number: 7084072
    Abstract: Disclosed is a method of manufacturing a semiconductor device. The method includes the steps of forming a gate in a cell region and a peripheral region of a substrate, depositing a buffer oxide layer on the gate and the substrate, annealing a resultant structure of the substrate, depositing a nitride spacer layer on the buffer oxide layer, depositing an oxide spacer layer on the nitride spacer layer, forming an oxide spacer at the peripheral region of the substrate, and removing the oxide spacer layer remaining in the cell region. The annealing step is additionally carried out after depositing the buffer oxide layer so as to improve the interfacial surface characteristic and film quality, so that oxide etchant is prevented from penetrating into the silicon substrate during the wet dip process. Unnecessary voids are prevented from being created in the silicon substrate.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: August 1, 2006
    Assignee: Hynix Semiconductor Inc.
    Inventors: Cheol Hwan Park, Sang Ho Woo, Chang Rock Song, Dong Su Park, Tae Hyeok Lee
  • Patent number: 7056447
    Abstract: Embodiments in accordance with the present invention provide for removing organic materials from substrates, for example substrates employed in the fabrication of integrated circuits, liquid crystal displays and the like. Such embodiments also provide for forming self-limiting oxide layers on oxidizable materials disposed on such substrates where such materials are exposed to the methods of the present invention. The methods of the present invention provide for contacting substrates with a solution of ozone, water and a surfactant, the solution being effective for removing organic materials and forming self-limiting oxide layers on oxidizable materials.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: June 6, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Terry L. Gilton
  • Patent number: 7030033
    Abstract: Priorly, semiconductor devices wherein a flexible sheet with a conductive pattern was employed as a supporting substrate, a semiconductor element was mounted thereon, and the ensemble was molded have been developed. In this case, problems occur that a multilayer wiring structure cannot be formed and warping of the insulating resin sheet in the manufacturing process is prominent. In order to solve these problems, a laminated plate 10 in which a thin first conductive film 11 and a thick second conductive film 12 have been laminated via a third conductive film 13 is used.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: April 18, 2006
    Assignees: Sanyo Electric Co., Ltd., Kanto Sanyo Semiconductors Co., Ltd.
    Inventors: Yusuke Igarashi, Hideki Mizuhara, Noriaki Sakamoto
  • Patent number: 7026255
    Abstract: In a method for photo-electrochemical etching of a semiconductor sample, the semiconductor sample is brought in contact with an electrolyte liquid. The contact area formed thereby is illuminated through the electrolyte liquid with UV light. The photo-current created by UV light irradiation at the contact area is measured. To increase the etching quality, a jet of fresh electrolyte liquid is repeatedly applied to the contact area. A device for carrying out the method includes a container to be filled with an electrolyte liquid, a UV source for illuminating the semiconductor sample with UV light through the electrolyte liquid, and a measuring instrument for measuring the photo-current created during UV light irradiation of the contact area. Further provided are an inlet for supplying fresh electrolyte liquid, directed towards the semiconductor sample, and a device attached to the inlet for repeated production of electrolyte fluid jets, directed towards the semiconductor sample.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: April 11, 2006
    Inventor: Thomas Wolff