Photodiodes Accessed By Fets Patents (Class 257/292)
  • Patent number: 10893224
    Abstract: The present technology relates to an imaging element and an electronic device that enable pixels to flexibly share a charge voltage converting unit. The imaging element includes a pixel array unit in which pixels respectively having charge voltage converting units and switches are arranged, and the charge voltage converting units of the plurality of pixels are connected to a signal line in parallel via the respective switches. The present technology is applied to, for example, a Complementary Metal Oxide Semiconductor (CMOS) image sensor in which pixels share a charge voltage converting unit.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: January 12, 2021
    Assignee: SONY CORPORATION
    Inventors: Yuu Kajiwara, Masahiko Nakamizo
  • Patent number: 10892286
    Abstract: An imaging device according to the present disclosure includes: a photoelectric converter generating signal charge; a semiconductor substrate including a first semiconductor layer on a surface; a charge accumulation region of a first conductivity type in the first semiconductor layer; a first transistor including, as a source or a drain, a first impurity region of the first conductivity type in the first semiconductor layer; and a blocking structure between the charge accumulation region and the first transistor. The blocking structure includes a second impurity region of a second conductivity type in the first semiconductor layer, between the charge accumulation region and the first impurity region, and a first electrode above the first semiconductor layer, overlapping at least part of the second impurity region in plan view, the first electrode being configured to be applied with a constant voltage in a period when the charge accumulation region accumulates the signal charge.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: January 12, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yoshihiro Sato, Junji Hirase
  • Patent number: 10880505
    Abstract: To reduce variations in switching timing from linear reading to logarithmic reading and perform reading with high accuracy in a solid state imaging device. A first photoelectric conversion unit converts incident light into charges and accumulates the charges in a first region. A second photoelectric conversion unit converts incident light into charges and accumulates the charges in a second region having a smaller area than the first region. A charge-voltage conversion unit accumulates charges photoelectrically converted by the first and second photoelectric conversion units for converting the charges into a voltage. First and second charge transfer units transfer charges accumulated in the first photoelectric conversion unit and charges accumulated in the second photoelectric conversion unit to the charge-voltage conversion unit, respectively. A charge reset unit resets charges accumulated in the charge-voltage conversion unit.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: December 29, 2020
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Takuya Toyofuku, Yorito Sakano
  • Patent number: 10872987
    Abstract: Barrier infrared detectors having structures configured to enhance the quantum efficiency, and methods of their manufacture are provided. In particular, device structures for constructing high-performance barrier infrared detectors using novel combinations of p-type and n-type absorber regions and contact regions are provided. The infrared detectors generally incorporate a “p+Bpnn+” structure. The detectors generally comprise, in sequence, a highly p-doped contact layer “p+”, an electron unipolar barrier “B”, a p-type absorber section “p”, and n-type absorber section “n”, and a highly n-doped contact layer “n+”.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: December 22, 2020
    Assignee: California Institute of Technology
    Inventors: David Z. Ting, Alexander Soibel, Arezou Khoshakhlagh, Sarath D. Gunapala
  • Patent number: 10872921
    Abstract: An image sensor and a method for fabricating the image sensor are provided. In the method for fabricating the image sensor, at first, a substrate having a first surface and a second surface opposite to the first surface is provided. Then, light-sensitive regions are formed in the substrate. Thereafter, transfer gate structures are formed on the first surface of the substrate. Then, the first surface of the substrate is formed to form recess structures on the light-sensitive regions. Thereafter, light-reflective layers are formed to cover the recess structures of the first surface of the substrate, in which the recess structures are filled with protrusion structures of the light-reflective layers. Further, the second surface of the substrate may be etched to form recess structures corresponding to the light-sensitive regions.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: December 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Hsin-Chi Chen
  • Patent number: 10868070
    Abstract: Image sensors are provided. An image sensor includes a substrate that includes a pixel region, a first surface, and a second surface that is opposite the first surface. The image sensor includes first and second photogates that are on the first surface and are configured to generate electric charge responsive to incident light in the pixel region. Moreover, the image sensor includes first and second lenses that are on the second surface and are configured to pass the incident light toward the first and second photogates.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: December 15, 2020
    Inventors: Young Gu Jin, Young Chan Kim, Min-Sun Keel
  • Patent number: 10868059
    Abstract: An image sensor includes a semiconductor substrate including a first surface and a second surface and further includes a well region and a first floating diffusion region that are each adjacent to the first surface. The image sensor includes a first vertical transmission gate and a second vertical transmission gate isolated from direct contact with each other and each extend from the first surface of the semiconductor substrate and in a thickness direction of the semiconductor substrate through at least a portion of the well region. The image sensor includes a first storage gate between the first vertical transmission gate and the first floating diffusion region and on the first surface of the semiconductor substrate. The image sensor includes a first tap transmission gate between the first storage gate and the first floating diffusion region and on the first surface of the semiconductor substrate.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: December 15, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-gu Jin, Young-chan Kim
  • Patent number: 10868075
    Abstract: A photosensitive detection unit has a composite dielectric gate MOS-C portion and a composite dielectric gate MOSFET portion. The two portions are formed above a same P-type semiconductor substrate, and share a charge coupled layer. A plurality of the photosensitive detection units are arranged on a same P-type semiconductor substrate in form of an array to obtain a detector. Adjacent unit pixels in the detector are isolated by deep trench isolation regions and P+-type injection regions below the isolation regions. During the detection, the P-type semiconductor substrate in the composite dielectric gate MOS-C portion senses light and then couples photoelectrons to the charge coupled layer, and photoelectronic signals are read by the composite dielectric gate MOSFET portion.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: December 15, 2020
    Assignee: NANJING UNIVERSITY
    Inventors: Haowen Ma, Feng Yan, Xiaofeng Bu, Chen Shen, Limin Zhang, Cheng Yang, Cheng Mao
  • Patent number: 10861889
    Abstract: A semiconductor device operable to demodulate incident modulated electromagnetic radiation, the semiconductor device comprising: a pinned photodiode structure including a substrate of a first type, an implant layer of a second type disposed within the substrate, first and second auxiliary implant layers of the second type disposed within the substrate and each disposed adjacent to the implant layer of the second type, an implant layer of the first type disposed within the implant layer of the second type and extending into the first and second auxiliary implant layers of the second type, an insulator disposed on a surface of the substrate, and a photo-detection region; first and second transfer gates disposed on a surface of the insulator, the transfer gates being operable to generate a field within the substrate; and first and second floating diffusion implant layers of the second type disposed within the substrate.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: December 8, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Bernhard Buettgen, Gözen Köklü, Theodor Walter Loeliger
  • Patent number: 10854656
    Abstract: The invention relates to short-wave infrared (SWIR) detector arrays, and methods for forming such arrays, comprising a light conversion layer (10) having a germanium-tin alloy composition. The shortwave infrared (SWIR) detector array comprises an absorber wafer (II) and a readout wafer (I). The absorber wafer (II) comprises a SWIR conversion layer (10) which has a Gei-xSnxalloy composition. The SWIR conversion layer (10) may have an internal structure comprising an array of rods (12) extending between a patterned support layer (40) and a doped silicon layer (10c). The detector comprises also a readout wafer (I) including an array of charge collecting areas and a readout electric circuit. The readout wafer (I) and the absorber wafer (II) are bonded by a low temperature bonding technique. The invention also relates to methods of fabrication of the SWIR detector array and to SWIR detector array applications such as a multi/hyperspectral LIDAR imaging systems.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: December 1, 2020
    Assignee: IRIS INDUSTRIES SA
    Inventor: Claude Meylan
  • Patent number: 10854658
    Abstract: An image sensor includes a photodiode within a semiconductor substrate and an interconnect structure over the semiconductor substrate. The interconnect structure includes a contact etch stop layer (CESL), a plurality of dielectric layers over the CESL and a plurality of metallization layers in the plurality of dielectric layers. At least one dielectric layer of the plurality of dielectric layers includes a low-k dielectric material. An opening is extended through the plurality of dielectric layers to expose a portion of the CESL above an active region of the photodiode. A cap layer is on sidewalls of the opening. The cap layer includes a dielectric material having a higher moisture resistance than the low-k dielectric material.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: December 1, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chiao-Chi Wang, Chung-Chuan Tseng, Chia-Ping Lai
  • Patent number: 10854659
    Abstract: Back side illumination (BSI) image sensors are provided. A BSI image sensor includes a substrate and a plurality of pixels configured to generate electrical signals responsive to light incident on the substrate. Each of the plurality of pixels includes a photodiode, an infrared radiation (IR) cut-off filter above the photodiode, a light shield pattern above the photodiode and including an opening corresponding to an area of 1 to 15% of each of the plurality of pixels, a planarization layer on the light shield pattern, and a lens on the planarization layer.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: December 1, 2020
    Inventors: Yun Ki Lee, Jong Hoon Park, Jun Sung Park
  • Patent number: 10818714
    Abstract: An image sensor may include an antireflection layer formed over a substrate, grid patterns and a guide pattern that are disposed over the antireflection layer, a color filter between the grid patterns, a phase difference detection filter structured to include a portion between one of the grid patterns and the guide pattern, and a lining layer formed to include a portion between one of the grid patterns and the phase difference detection filter. The lining layer has a refractive index lower than that of the phase difference detection filter.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: October 27, 2020
    Assignee: SK hynix Inc.
    Inventor: Yun-Hui Yang
  • Patent number: 10811454
    Abstract: There is provided a solid-state imaging device including a first substrate having a pixel circuit including a pixel array unit formed thereon, and a second substrate having a plurality of signal processing circuits formed thereon so as to be arranged through a scribe region. The first substrate and the second substrate are stacked.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: October 20, 2020
    Assignee: Sony Corporation
    Inventor: Kunihiko Izuhara
  • Patent number: 10784296
    Abstract: The present disclosure relates to the technical field of semiconductors, and discloses an image sensor and a manufacturing method therefor. The image sensor includes: a semiconductor substrate; a first active region located on the semiconductor substrate; a doped semiconductor layer located on the first active region; and a contact located on the semiconductor layer, where the first active region includes: a first doped region and a second doped region abutting against the first doped region, wherein the second doped region is located at an upper surface of the first active region, and wherein the second doped region is formed by dopants in the semiconductor layer that are annealed to be diffused to a surface layer of the first doped region. The present disclosure may reduce leakage current and improve device performances.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: September 22, 2020
    Assignees: Semiconductor Manufacturing (Shanghai) International Corporation, Semiconductor Manufacturing (Beijing) International Corporation
    Inventors: Tzu Yin Chiu, Chong Wang, Haifang Zhang, Xuanjie Liu
  • Patent number: 10777591
    Abstract: A semiconductor device includes: a photodiode formed in a substrate; and at least one transistor having a gate feature that comprises a first portion and a second portion coupled to an end of the first portion, the first portion disposed above and extending along a major surface of the substrate and the second portion extending from the major surface of the substrate into the substrate, wherein the photodiode and the at least one transistor at least partially form a pixel.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: September 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Hsiang Hung, Chung-Chuan Tseng, Li-Hsin Chu, Chia-Ping Lai
  • Patent number: 10777590
    Abstract: A method for forming an image sensor device structure is provided. The method includes forming a light-sensing region in a substrate, and forming an interconnect structure below a first surface of the substrate. The method also includes forming a trench in the light-sensing region from a second surface of the substrate, and forming a doping layer in the trench. The method includes forming an oxide layer in the trench and on the doping layer to form a doping region, and the doping region is inserted into the light-sensing region.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: September 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Yen-Ting Chiang, Chun-Yuan Chen, Hsiao-Hui Tseng, Yu-Jen Wang, Shyh-Fann Ting, Wei-Chuang Wu, Jen-Cheng Liu, Dun-Nian Yaung
  • Patent number: 10770505
    Abstract: Per-pixel performance is improved in a combined visible and ultraviolet image sensor array such as for a hyperspectral camera. In one example, an array of photodetectors is formed on a silicon substrate. A subset of the photodetectors are improved to improve sensitivity to ultraviolet light, and the photodetector array is finished to form an image sensor.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: September 8, 2020
    Assignee: Intel Corporation
    Inventors: Richmond Hicks, Khaled Ahmed
  • Patent number: 10770499
    Abstract: An image sensor including a substrate having a first, a first device isolation region adjacent to the first surface and defining a unit pixel, a transfer gate on the first surface at an edge of the unit pixel, a photoelectric conversion part in the substrate and adjacent to a first side surface of the transfer gate, and a floating diffusion region in the substrate and adjacent to a second side surface of the transfer gate. The second side surface faces the first side surface. The first device isolation region is spaced apart from the second side surface. The substrate and the first device isolation region are doped with impurities having a first conductivity. A first impurity concentration of the first device isolation region is greater than a second impurity concentration of the substrate.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: September 8, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: SeungSik Kim, Sungchul Kim, Haeyong Park
  • Patent number: 10770502
    Abstract: Disclosed is a method of fabricating a semiconductor image sensor device. The method includes providing a substrate having a pixel region, a periphery region, and a bonding pad region. The substrate further has a first side and a second side opposite the first side. The pixel region contains radiation-sensing regions. The method further includes forming a bonding pad in the bonding pad region; and forming light-blocking structures over the second side of the substrate, at least in the pixel region, after the bonding pad has been formed.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: September 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chiu-Jung Chen, Chun-Hao Chou, Hsin-Chi Chen, Kuo-Cheng Lee, Volume Chien, Yung-Lung Hsu, Yun-Wei Cheng
  • Patent number: 10756127
    Abstract: A method for fabricating an image sensor array having a first group of photodiodes for detecting light at visible wavelengths a second group of photodiodes for detecting light at infrared or near-infrared wavelengths, the method including growing a germanium-silicon layer on a semiconductor donor wafer; defining pixels of the image sensor array on the germanium-silicon layer; defining a first interconnect layer on the germanium-silicon layer, wherein the interconnect layer includes a plurality of interconnects coupled to the first group of photodiodes and the second group of photodiodes; defining integrated circuitry for controlling the pixels of the image sensor array on a semiconductor carrier wafer; defining a second interconnect layer on the semiconductor carrier wafer, wherein the second interconnect layer includes a plurality of interconnects coupled to the integrated circuitry; and bonding the first interconnect layer with the second interconnect layer.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: August 25, 2020
    Assignee: Artilux, Inc.
    Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang
  • Patent number: 10750108
    Abstract: An imaging system comprises an image pixel array, a dark pixel array, and a controller. The image pixel array includes a plurality of pixel clusters adapted to generate image signals. The dark pixel array is adapted to generate one or more black reference signals corresponding to a global black level value of the imaging system. The controller includes logic that when executed by the controller causes the system to perform operations including determining local black level values for each of the pixel clusters and correcting a first image signal included in the image signals based, at least in part, on the global black level and a first local black level value included in the local black level values.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: August 18, 2020
    Assignee: OmniVision Technologies, Inc.
    Inventor: Gabor Mikes
  • Patent number: 10749064
    Abstract: The invention relates to a radiation detector comprising a stack of superimposed layers successively comprising: an absorbent layer configured to absorb the radiation and made from a first semiconductor material, a screen charges layer made from a semiconductor material having a second bandgap value, a transition layer made from a semiconductor material having a third bandgap value, and a transition layer made from a semiconductor material having a third bandgap value, the absorbent layer and the screen charges layer having a doping of a first type, the first window layer having a doping of a second type, a dopant density of the window layer being greater than the dopant density of the transition layer.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: August 18, 2020
    Assignees: THALES, COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Axel Evirgen, Jean-Luc Reverchon
  • Patent number: 10741599
    Abstract: Imaging devices and electronic apparatuses incorporating imaging devices or image pick-up elements are provided. An imaging device as disclosed can include a substrate, a first opto-electronic converter having a first area formed in the substrate, and a second opto-electronic converter having a second area formed in the substrate. The first area is larger than the second area. In addition, a light blocking wall can extend from a first surface of the substrate such that at least a portion of the light blocking wall is between the first opto-electronic converter and the second opto-electronic converter.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: August 11, 2020
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Takeshi Yanagita, Taichi Natori, Hirotsugu Takahashi, Shunsuke Maruyama, Yasushi Maruyama
  • Patent number: 10734426
    Abstract: An image sensor is provided to include image pixels and phase difference detection pixels. The image pixels may include image photodiodes formed in a substrate; color filters formed over the substrate and vertically overlapping with the image photodiodes; and image micro lenses over the color filters. The phase difference detection pixels may include phase difference detection photodiodes formed in the substrate; transmitting layers formed over the substrate and vertically overlapping with the phase difference detection photodiodes; guide patterns formed between the substrate and the transmitting layers; and phase difference detection micro lenses over the transmitting layers. The transmitting layers may have a refractive index lower than the color filters and the phase difference detection micro lenses.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: August 4, 2020
    Assignee: SK hynix Inc.
    Inventor: Youngwoong Do
  • Patent number: 10720466
    Abstract: An image sensor is disclosed. The image sensor may include a photosensing region in a substrate and configured to generate photoelectrons in response to incident light on the photosensing region; bias patterns arranged to surround the photosensing region and including a conductive material; a floating diffusion region at a center of the photosensing region to store photoelectrons generated by the photosensing region; and transfer gates that partially overlap with the floating diffusion region and are operable to transfer photoelectrons generated by the photosensing region to the floating diffusion region. The photosensing region and the bias patterns are electrically isolated from one another.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: July 21, 2020
    Assignee: SK hynix Inc.
    Inventor: Sun-Ho Oh
  • Patent number: 10714527
    Abstract: A photoelectric conversion apparatus is provided. The apparatus comprises a substrate including two light receiving regions in which light receiving devices are arranged; electrode pads arranged on the substrate; and a readout circuit arranged on the substrate and configured to read out signals from the light receiving regions. The electrode pads include an output pad for outputting a signal, and a power supply pad for supplying power to the light receiving regions or the readout circuit. Each of the light receiving regions has a shape in which a first direction is taken as a longitudinal direction, the light receiving regions are arranged along a second direction with an interval therebetween, the second direction intersecting the first direction, and one or more pads of the electrode pads is sandwiched by the light receiving regions in the second direction.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: July 14, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hirotaka Shiomichi, Wataru Endo
  • Patent number: 10707248
    Abstract: In one general aspect, the techniques disclosed here feature an imaging device that includes: a semiconductor substrate; a first pixel cell including a first photoelectric converter in the semiconductor substrate, and a first capacitive element one end of which is electrically connected to the first photoelectric converter; and a second pixel cell including a second photoelectric converter in the semiconductor substrate. An area of the second photoelectric converter is larger than an area of the first photoelectric converter in a plan view.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: July 7, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Sanshiro Shishido, Masashi Murakami, Kazuko Nishimura
  • Patent number: 10692914
    Abstract: An image sensor is disclosed. The image sensor includes an epitaxial layer, a plurality of plug structures and an interconnect structure. Wherein the plurality of plug structures are formed in the epitaxial layer, and each plug structure has doped sidewalls, the epitaxial layer and the doped sidewalls form a plurality of photodiodes, the plurality of plug structures are used to separate adjacent photodiodes, and the epitaxial layer and the doped sidewalls are coupled to the interconnect structure via the plug structures. An associated method of fabricating the image sensor is also disclosed. The method includes: providing a substrate having a first-type doped epitaxial substrate layer on a second-type doped epitaxial substrate layer; forming a plurality of isolation trenches in the first-type doped epitaxial substrate layer; forming a second-type doped region along sidewalls and bottoms of the plurality of isolation trenches; and filling the plurality of isolation trenches by depositing metal.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: June 23, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Alexander Kalnitsky, Jhy-Jyi Sze, Dun-Nian Yaung, Chen-Jong Wang, Yimin Huang, Yuichiro Yamashita
  • Patent number: 10692922
    Abstract: A photoelectric conversion device includes photoelectric converter arranged in semiconductor substrate made of silicon and is and transistor arranged on surface of the substrate. The photoelectric converter includes first region of a first conductivity type, configured to accumulate charges, and second region of second conductivity type. The first region is arranged between the surface and the second region. The substrate includes third region as source and/or drain of the transistor. The substrate includes, in position which is below the third region and is apart from the third region, impurity region containing group 14 element other than silicon. Depth from the surface of peak position in density distribution of the group 14 element in the impurity region is smaller than depth from the surface of peak position in density distribution of majority carrier in the second region.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: June 23, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Tasuku Kaneda, Toshihiro Shoyama
  • Patent number: 10686001
    Abstract: An image sensor includes: a photoelectric conversion unit that photoelectrically converts incident light transmitted through a microlens to generate electric charge; an accumulation unit that accumulates the electric charge generated by the photoelectric conversion unit; and a transfer unit that transfers the electric charge generated by the photoelectric conversion unit to the accumulation unit, wherein: the photoelectric conversion unit, the transfer unit, and the accumulation unit are provided along a direction of an optical axis of the microlens.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: June 16, 2020
    Assignee: NIKON CORPORATION
    Inventors: Toru Takagi, Satoshi Nakayama, Ryoji Ando, Takashi Seo, Yohei Matsuoka, Yoshiyuki Watanabe
  • Patent number: 10672808
    Abstract: An optical sensor in which photo currents generated by light in the visible and infrared wavelength ranges are to be tapped separately at pn junctions of active regions. The active regions include n- or p-doping and are formed in a p-substrate 52. The optical sensor comprises a surface-near first active region 12, and a second active region 14 subjacent to the first active region 12 and forming together with the first active region 12 a pn junction 22 that is short-circuited. A third active region 20 is subjacent to the second active region 14 and forming together with the second active region a further pn junction 23. Together with a fourth active region 24 subjacent to the second active region 20, a further pn junction 25, 29 is formed together with the third active region 20 and the substrate 52.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: June 2, 2020
    Assignee: X-FAB Semiconductor Foundries GmbH
    Inventor: Daniel Gaebler
  • Patent number: 10665802
    Abstract: An organic photoelectric conversion element, an imaging device, and an optical sensor, which can detect a plurality of wavelength regions by a single element structure, are provided. The photoelectric conversion element is formed by providing an organic photoelectric conversion portion including two or more types of organic semiconductor materials having different spectral sensitivities between the first and the second electrodes. Wavelength sensitivity characteristics of the photoelectric conversion element change according to a voltage (bias voltage) applied between the first and the second electrodes. The photoelectric conversion element is mounted in the imaging device and the optical sensor.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: May 26, 2020
    Assignee: SONY CORPORATION
    Inventors: Toru Udaka, Masaki Murata, Rui Morimoto, Osamu Enoki
  • Patent number: 10649100
    Abstract: The present disclosure relates to an X-ray detector. The X-ray detector includes the first and second gate lines arranged to be spaced apart from each other on a substrate, a data line and a bias line that are arranged to be spaced apart from each other in a direction intersecting the first and second gate lines, and define a unit pixel area, a storage capacitor that is arranged in the unit pixel area and has one end connected to a ground, a phototransistor that is turned on by a reset signal applied to the first gate line and provides a signal generated by an incident light source to the storage capacitor, and a thin film transistor that is turned on by a gate signal applied to the second gate line to provide a charge stored in the storage capacitor to the data line.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: May 12, 2020
    Assignee: LG Display Co., Ltd.
    Inventors: Kangwoo Kim, Siu Yoon, Sejin Shin
  • Patent number: 10651226
    Abstract: An image sensor includes a substrate having a first surface and a second surface opposite to each other, a first floating diffusion region provided in the substrate and being adjacent to the first surface, a through-electrode provided in the substrate and electrically connected to the first floating diffusion region, an insulating structure, a bottom electrode, a photoelectric conversion layer, and a top electrode sequentially stacked on the second surface, a color filter buried in the insulating structure, and a top contact plug penetrating the insulating structure to connect the bottom electrode to the through-electrode.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: May 12, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Min Lee, Seokjin Kwon, Hyeyun Park, Beomsuk Lee, Dongmo Im
  • Patent number: 10651227
    Abstract: An array substrate for an X-ray detector and an X-ray detector including the reduces or minimizes a leakage current caused by etching of a PIN layer, and also reduces or minimizes light reaction of the PIN layer within a non-pixel region. The array substrate for the X-ray detector includes an integrated PIN layer formed to cover all pixel regions. Upper electrodes, which are spaced apart from each other according to individual pixel regions, are disposed over the PIN layer. A light shielding portion is disposed between neighboring upper electrodes.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: May 12, 2020
    Assignee: LG DISPLAY CO., LTD.
    Inventor: Jungyul Yang
  • Patent number: 10644058
    Abstract: An image sensor includes a plurality of photo diodes disposed at a semiconductor substrate, and a splitter disposed on the photo diodes. The splitter splits an incident light depending on a wavelength so that split light of different colors enters different photo diodes, respectively. The splitter includes a first pattern structure having a cross-sectional structure in which a plurality of refractive layer patterns are deposited in a lateral direction.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: May 5, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-Hun Kim, Sang-Su Park, Chang-Hwa Kim, Hyung-Yong Kim, Beom-Suk Lee, Man-Geun Cho, Jae-Sung Hur
  • Patent number: 10636825
    Abstract: Embodiments described herein generally relate to an apparatus for capturing an image and a photoactive device for that apparatus. In one embodiment, the apparatus for capturing an image includes a lens and a photoactive device. The photoactive device is positioned behind the lens. The photoactive device includes a substrate, one or more photodiodes, and a color filter array. The one or more photodiodes are formed in the substrate. The color filter array is positioned over the substrate. The color filter array has one or more color filters. Each color filter has a radiation receiving surface that is shaped to re-direct radiation to a respective photodiode.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joseph R. Johnson, Robert Jan Visser, Wayne McMillan, Rutger Meyer Timmerman Thijssen
  • Patent number: 10636930
    Abstract: A single photon avalanche diode (SPAD) image sensor is disclosed. The SPAD image sensor includes: a substrate having a front surface and a back surface; wherein the substrate includes a sensing region, and the sensing region includes: a common node heavily doped with dopants of a first conductivity type, the common node being within the substrate and abutting the back surface of the substrate; a sensing node heavily doped with dopants of a second conductivity type opposite to the first conductivity type, the sensing node being within the substrate and abutting the front surface of the substrate; and a first layer doped with dopants of the first conductivity type between the common node and the sensing node.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: April 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventor: Yuichiro Yamashita
  • Patent number: 10622399
    Abstract: Disclosed herein is a solid-state imaging device including: a laminated semiconductor chip configured to be obtained by bonding two or more semiconductor chip sections to each other and be obtained by bonding at least a first semiconductor chip section in which a pixel array and a multilayer wiring layer are formed and a second semiconductor chip section in which a logic circuit and a multilayer wiring layer are formed to each other in such a manner that the multilayer wiring layers are opposed to each other and are electrically connected to each other; and a light blocking layer configured to be formed by an electrically-conductive film of the same layer as a layer of a connected interconnect of one or both of the first and second semiconductor chip sections near bonding between the first and second semiconductor chip sections. The solid-state imaging device is a back-illuminated solid-state imaging device.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: April 14, 2020
    Assignee: Sony Corporation
    Inventor: Toshihiko Hayashi
  • Patent number: 10615213
    Abstract: A method of manufacturing a semiconductor device includes providing a semiconductor substrate having a top surface, on which has been formed a color filter and a micro-lens, and a bottom surface opposite to the top surface, forming a redistribution line on the bottom surface of the semiconductor substrate, and forming on the bottom surface of the semiconductor substrate a passivation layer covering the redistribution line. After the redistribution line and passivation layer are formed, an oxide layer between the redistribution line and the passivation is formed at a temperature that avoids thermal damage to the color filter and the micro-lens.
    Type: Grant
    Filed: June 3, 2018
    Date of Patent: April 7, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yonghoe Cho, Jongbo Shim, Seunghoon Yeon, Won Il Lee
  • Patent number: 10615198
    Abstract: A method for fabricating an optoelectronic device includes forming an isolation structure between an array of pixel electrodes and a built-in pad (BIP) on a dielectric layer of an integrated circuit, depositing a photosensitive film over the dielectric layer, such that at least one pinch point is formed in the photosensitive film at an edge of the isolation structure. The method further includes depositing an electrode layer, which is at least partially transparent, over the photosensitive film, etching away the photosensitive film from the BIP, and after etching away the photosensitive film, depositing a metal layer over the BIP and in contact with the electrode layer.
    Type: Grant
    Filed: December 23, 2018
    Date of Patent: April 7, 2020
    Assignee: APPLE INC.
    Inventors: Yu-Hua Chang, Zachary M Beiley, Richard W Snow, Robin W Cheung
  • Patent number: 10608026
    Abstract: An image sensor for securing an area of a photodiode includes a pixel area and a transistor area adjacent to the pixel area. The pixel area may include a photodiode and a floating diffusion area. The transistor area may include transistors extending along an edge of the pixel area. The transistors in the transistor area may include a reset transistor, one or more source follower transistors, and one or more selection transistors, and the reset transistor and one source follower transistor adjacent to the reset transistor may share a common drain area. The source follower transistors and the selection transistors may each share a common source area or a common drain area between two adjacent transistors thereof.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: March 31, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jonghyun Go, Jae-Kyu Lee
  • Patent number: 10608028
    Abstract: The present technology relates to techniques of preventing intrusion of moisture into a chip. Various illustrative embodiments include image sensors that include: a substrate; a plurality of layers stacked on the substrate; the plurality of layers including a photodiode layer having a plurality of photodiodes formed on a surface of the photodiode layer; the plurality of layers including at least one layer having a groove formed such that a portion of the at least one layer is excavated; and a transparent resin layer formed above the photodiode layer and formed in the groove. The present technology can be applied to, for example, an image sensor.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: March 31, 2020
    Assignee: SONY CORPORATION
    Inventors: Atsushi Yamamoto, Shinji Miyazawa, Yutaka Ooka, Kensaku Maeda, Yusuke Moriya, Naoki Ogawa, Nobutoshi Fujii, Shunsuke Furuse, Masaya Nagata, Yuichi Yamamoto
  • Patent number: 10600827
    Abstract: An image sensor includes: an accumulation unit that accumulates an electric charge generated by a photoelectric conversion unit that photoelectrically converts incident light transmitted through a microlens; and a readout unit that reads out a signal based on a voltage of the accumulation unit, wherein the accumulation unit and the readout unit are included along an optical axis direction of the microlens.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: March 24, 2020
    Assignee: NIKON CORPORATION
    Inventor: Osamu Saruwatari
  • Patent number: 10600833
    Abstract: An image sensor is provided. The image sensor includes a visible light receiving portion and an infrared receiving portion. The visible light receiving portion is configured to receive a visible light. The infrared receiving portion is configured to receive infrared. The visible light receiving portion includes a color filter ball layer configured to collect the visible light. In some embodiments of the present invention, the infrared receiving portion includes an infrared pass filter ball layer configured to collect the infrared. In some other embodiments of the present invention, the infrared receiving portion includes a white filter ball layer configured to collect the infrared.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: March 24, 2020
    Assignee: HIMAX TECHNOLOGIES LIMITED
    Inventors: Yu-Jui Hsieh, Po-Nan Chen
  • Patent number: 10586825
    Abstract: An image sensor includes a plurality of photodiodes disposed in a semiconductor material to convert image light into image charge, and a metal grid, including a metal shield that is coplanar with the metal grid, disposed proximate to a backside of the semiconductor material. The metal grid is optically aligned with the plurality of photodiodes to direct the image light into the plurality of photodiodes, and a contact pad is disposed in a trench in the semiconductor material. The contact pad is coupled to the metal shield to ground the metal shield.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: March 10, 2020
    Assignee: OmniVision Technologies, Inc.
    Inventors: Qin Wang, Gang Chen, Duli Mao
  • Patent number: 10580808
    Abstract: A photodetection device includes: a photoelectric converter generating charge; a first diffusion region having a first end connected to the photoelectric converter and a second end and extending in a first direction from the first end toward the second end; a second diffusion region having a third end connected to a first side surface, of the first diffusion region, which is along the first direction and a fourth end and extending in a second direction from the third end toward the fourth end; a first charge accumulator connected to the fourth end; a first gate electrode covering at least part of the first diffusion region; and a second gate electrode covering at least part of the second diffusion region. The second gate electrode covers a first portion of the first diffusion region without the first gate electrode intervention. The first portion is adjacent to the second diffusion region.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: March 3, 2020
    Assignee: Panasonic Intellectual Property Management Co. Ltd.
    Inventors: Masayuki Takase, Sanshiro Shishido
  • Patent number: 10574929
    Abstract: Disclosed is an image sensor. The image sensor includes an active pixel sensor array including first to fourth pixel units sequentially arranged in a column direction, and each of the first to fourth pixel units is composed of a plurality of pixels. A first pixel group including the first and second pixel units is connected to a first column line, and a second pixel group including the third pixel unit and the fourth pixel unit is connected to a second column line. The image sensor includes a correlated double sampling circuit including first and second correlated double samplers and configured to convert a first sense voltage sensed from a selected pixel of the first pixel group and a second sense voltage sensed from a selected pixel of the second pixel group into a first correlated double sampling signal and a second correlated double sampling signal, respectively.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: February 25, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Minji Hwang, Hyosang Kim, Haesick Sul, Seung Hyun Lim
  • Patent number: 10573682
    Abstract: A pixel array in an image sensor includes a first pixel group. The first pixel group includes unit pixels that include photoelectric conversion units and a first signal generation unit shared by the photoelectric conversion units. The first signal generation unit includes transfer transistors connected to the photoelectric conversion units, respectively, a first floating diffusion node connected to the transfer transistors, a plurality of driving transistors connected to the first floating diffusion node and connected in parallel with one another, and a plurality of selection transistors connected in parallel between a first output terminal and the plurality of driving transistors. The first output terminal outputs pixel signals that correspond to photo charges collected by the photoelectric conversion units, respectively. A number of the plurality of selection transistors is equal to a number of the plurality of driving transistors.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: February 25, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Sun Oh, Yi-Tae Kim, Yu-Jung Choi