In Complementary Field Effect Transistor Integrated Circuit Patents (Class 257/357)
  • Patent number: 9048255
    Abstract: A method comprises forming a first trench and a second trench, depositing a dielectric material in a lower portion of the first trench, depositing a gate electrode material in the second trench and an upper portion of the first trench, forming a first N+ region and a second N+ region through an ion implantation process, wherein the first N+ region and the second N+ region are on opposite sides of the first trench and forming an accumulation layer along a sidewall of the second trench.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: June 2, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Patent number: 9006830
    Abstract: Provided is a semiconductor device having high ESD tolerance. A first via (16) is used for electrically connecting a pad (22) to a drain of an NMOS transistor of an ESD protective circuit. The first vias (16) are formed under the pad (22) only on one side of a rectangular ring-shaped intermediate metal film (17) and on another side thereof opposed to the one side. In other words, all the first vias (16) for establishing an electrical connection to the drains are present substantially directly under the pad (22). Consequently, a surge current caused by ESD and applied to the pad (22) is more likely to flow uniformly among all the drains. Then, respective channels of the NMOS transistor of the ESD protective circuit are more likely to uniformly operate, and hence the ESD tolerance of the semiconductor device is increased.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: April 14, 2015
    Assignee: Seiko Instruments Inc.
    Inventors: Takeshi Koyama, Yoshitsugu Hirose
  • Patent number: 9006832
    Abstract: A high-voltage MEMS system compatible with low-voltage semiconductor process technology is disclosed. The system comprises a MEMS device coupled to a high-voltage bias generator employing an extended-voltage isolation residing in a semiconductor technology substrate. The system avoids the use of high-voltage transistors so that special high-voltage processing steps are not required of the semiconductor technology, thereby reducing process cost and complexity. MEMS testing capability is addressed with a self-test circuit allowing modulation of the bias voltage and current so that a need for external high-voltage connections and associated electro-static discharge protection circuitry are also avoided.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: April 14, 2015
    Assignee: Invensense, Inc.
    Inventors: Derek Shaeffer, Baris Cagdaser, Joseph Seeger
  • Patent number: 9006831
    Abstract: Provided is a semiconductor device having high ESD tolerance. A first via (16) is used for electrically connecting a pad to a drain of an NMOS transistor of an ESD protection circuit. The first via (16) is arranged directly above the drain and present substantially directly under the pad. Consequently, a surge current caused by ESD and applied to the pad is more likely to flow uniformly among all the drains. Then, respective channels of the NMOS transistor of the ESD protection circuit are more likely to uniformly operate, and hence the ESD tolerance of the semiconductor device increases.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: April 14, 2015
    Assignee: Seiko Instruments Inc.
    Inventors: Takeshi Koyama, Yoshitsugu Hirose
  • Patent number: 8994125
    Abstract: A semiconductor device includes, on a semiconductor substrate, a gate insulating film, a pMIS metal material or an nMIS metal material, a gate electrode material, and a gate sidewall metal layer.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: March 31, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventor: Kenshi Kanegae
  • Patent number: 8969914
    Abstract: An integrated circuit including a first power rail, a second power rail, a power clamp connected between the first and second power rails; and a trigger circuit connected to the power clamp and the first second power rails. The trigger circuit includes an RC element formed on the basis of field effect transistors, first inverter stage connected to the RC element, a second inverter stage, and a third inverter stage. The first, second and third inverter stages are connected in series to a control input of the power clamp. The trigger circuit also included a feed back connection from an output of the second inverter stage to the first inverter stage.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: March 3, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Sreenivasa Chalamala, Matthias Baer
  • Patent number: 8952457
    Abstract: An ESD protection circuit including a substrate of a first conductivity type, an annular well region of a second conductivity type, two first regions of the first conductivity type and at least one transistor of the second conductivity type is provided. The annular well region is disposed in the substrate. The first regions are disposed in the substrate and surrounded by the annular well region. The at least one transistor is disposed on the substrate between the first regions and including a source, a gate, and a drain. The annular well region and the drain are coupled to a first voltage source. The source and one of the first regions are coupled to a second voltage source, and the other of the first regions is coupled to a substrate triggering circuit.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: February 10, 2015
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Patent number: 8946825
    Abstract: During various processing operations, ions from process plasma may be transfer to a deep n-well (DNW) formed under devices structures. A reverse-biased diode may be connected to the signal line to protect a gate dielectric formed outside the DNW and is connected to the drain of the transistor formed inside the DNW.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: David Yen, Sung-Chieh Lin, Kuoyuan (Peter) Hsu
  • Patent number: 8946824
    Abstract: A standard cell has gate patterns extending in Y direction and arranged at an equal pitch in X direction. End portions of the gate patterns are located at the same position in Y direction, and have an equal width in X direction. A diode cell is located next to the standard cell in Y direction, and includes a plurality of opposite end portions formed of gate patterns that are opposed to the end portions, in addition to a diffusion layer which functions as a diode.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: February 3, 2015
    Assignee: Panasonic Corporation
    Inventors: Tomoaki Ikegami, Kazuyuki Nakanishi, Masaki Tamaru
  • Patent number: 8941181
    Abstract: An integrated circuit with a shallow trench isolated, low capacitance, ESD protection diode. An integrated circuit with a gate space isolated, low capacitance, ESD protection diode. An integrated circuit with a gate space isolated, low capacitance, ESD protection diode in parallel with a shallow trench isolated, low capacitance, ESD protection diode.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: January 27, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Mahalingam Nandakumar, Sunitha Venkataraman, David L. Catlett, Jr.
  • Patent number: 8928109
    Abstract: A semiconductor device is disclosed, which includes first and second power supply pads supplied with first and second power voltages, respectively, a first protection circuit coupled between the first and second power supply pads, and an internal circuit including a first power line and a plurality of transistors electrically coupled to the first power line. The first power line includes first and second portions, and the first portion is electrically connected to the first power supply pad. The device further includes a second protection circuit coupled between the second portion of the first power line and the second power supply pad.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: January 6, 2015
    Assignee: PS4 Luxco S.a.r.l.
    Inventors: Takashi Ishihara, Hisayuki Nagamine
  • Publication number: 20150001626
    Abstract: In a static electricity protection circuit according to the invention, a first wiring is electrically connected to a drain of a first p-type transistor and a gate and a source of a first n-type transistor; a second wiring is electrically connected to a gate and a source of the first p-type transistor, a drain of the first n-type transistor, a drain of a second p-type transistor and a gate and a source of a second n-type transistor; and a third wiring is electrically connected to a gate and a source of the second p-type transistor and a drain of the second n-type transistor.
    Type: Application
    Filed: June 25, 2014
    Publication date: January 1, 2015
    Inventors: Hidenori Sokabe, Masahito Yoshii
  • Patent number: 8890248
    Abstract: An electrostatic discharge (ESD) device for protecting an input/output terminal of a circuit, the device comprising a first transistor with an integrated silicon-controlled rectifier (SCR) coupled between the input/output (I/O) terminal of the circuit and a node and a second transistor with an integrated silicon-controlled rectifier coupled between the node and a negative terminal of a supply voltage, wherein the silicon-controlled rectifier of the first transistor triggers in response to a negative ESD voltage and the silicon-controlled rectifier of the second transistor triggers in response to a positive ESD voltage.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: November 18, 2014
    Assignee: Texas Instruments Incorporation
    Inventors: Timothy Patrick Pauletti, Sameer Pendharkar, Wayne Tien-Feng Chen, Jonathan Brodsky, Robert Steinhoff
  • Patent number: 8872269
    Abstract: An antenna cell for preventing plasma enhanced gate dielectric failures, is provided. The antenna cell design utilizes a polysilicon lead as a gate for a dummy transistor. The polysilicon lead may be one of a group of parallel, nested polysilicon lead. The dummy transistor includes the gate coupled to a substrate maintained at VSS, either directly through a metal lead or indirectly through a tie-low cell. The gate is disposed over a dielectric disposed over a continuous source/drain region in which the source and drain are tied together. A diode is formed with the semiconductor substrate within which it is formed. The source/drain region is coupled to another metal lead which may be an input pin and is coupled to active transistor gates, preventing plasma enhanced gate dielectric damage to the active transistors.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 28, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jen-Hang Yang, Chun-Fu Chen, Pin-Dai Sue, Hui-Zhong Zhuang
  • Patent number: 8866218
    Abstract: In one general aspect, a system can include a through-silicon-via (TSV) coupling a drain region associated with a vertical transistor to a back metal disposed on a second side of the substrate opposite the first side. The system can include a first metal layer, and a second metal layer aligned orthogonal to the first metal layer. The system can define a conduction path extending substantially vertically through the TSV to the substrate and laterally through the substrate.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: October 21, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Daniel M. Kinzer, Steven Sapp, Chung-Lin Wu, Oseob Jeon, Bigidis Dosdos
  • Patent number: 8847319
    Abstract: Dummy structures between a high voltage (HV) region and a low voltage (LV) region of a substrate are disclosed, along with methods of forming the dummy structures. An embodiment is a structure comprising a HV gate dielectric over a HV region of a substrate, a LV gate dielectric over a LV region of the substrate, and a dummy structure over a top surface of the HV gate dielectric. A thickness of the LV gate dielectric is less than a thickness of the HV gate dielectric. The dummy structure is on a sidewall of the HV gate dielectric.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Huei-Ru Liu, Chien-Chih Chou, Kong-Beng Thei, Gwo-Yuh Shiau
  • Patent number: 8847304
    Abstract: A semiconductor device includes a plurality of conductive layers and a plurality of insulating layers formed alternately with each other, at least one channel layer passing through the plurality of conductive layers and the plurality of insulating layers, and at least one first charge blocking layer surrounding the at least one channel layer, wherein a plurality of first regions, interposed between the at least one channel layer and the plurality of conductive layers, and a plurality of second regions, interposed between the at least one channel layer and the plurality of insulating layers, are alternately defined on the at least one first charge blocking layer, and each of the plurality of first regions has a greater thickness than each of the plurality of second regions.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: September 30, 2014
    Assignee: SK Hynix Inc.
    Inventors: Ki Hong Lee, Seung Ho Pyi, Seok Min Jeon
  • Patent number: 8842400
    Abstract: A semiconductor device for electrostatic discharge (ESD) protection includes a silicon controlled rectifier (SCR) including a semiconductor substrate, a first well formed in the substrate, a second well formed in the substrate, a first p-type region formed in the first well to serve as an anode, and a first n-type region partially formed in the second well to serve as a cathode, a p-type metal-oxide-semiconductor (PMOS) transistor formed in the first well including a gate, a first diffused region and a second diffused region separated apart from the first diffused region, a second n-type region formed in the first well electrically connected to the first diffused region of the PMOS transistor, and a second p-type region formed in the substrate electrically connected to the second diffused region of the PMOS transistor.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: September 23, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Dou Ker, Shih-Hung Chen, Kun-Hsien Lin
  • Patent number: 8836041
    Abstract: Silicon germanium regions are formed adjacent gates electrodes over both n-type and p-type regions in an integrated circuit. A hard mask patterned by lithography then protects structures over the p-type region while the silicon germanium is selectively removed from over the n-type region, even under remnants of the hard mask on sidewall spacers on the gate electrode. Silicon germanium carbon is epitaxially grown adjacent the gate electrode in place of the removed silicon germanium, and source/drain extension implants are performed prior to removal of the remaining hard mask over the p-type region structures.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: September 16, 2014
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Nicholas Loubet, Balasubramanian Pranatharthiharan
  • Patent number: 8823106
    Abstract: The present invention mainly provides an ESD protective element which can be built in high voltage semiconductor integrated circuit devices without increasing the chip area. An ESD protective element according to one embodiment has a construction comprising a semiconductor layer, a first region of a first conduction type formed in the semiconductor layer, a first region of a second conduction type formed in the semiconductor layer away from the first region of the first conduction type, a second region of the second conduction type formed in the first region of the second conduction type and has a higher impurity concentration than it, and a second region of the first conduction type formed in the second region of the second conduction type and has a high impurity concentration. The first and second regions of the second conduction type are in an electrically floating state.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: September 2, 2014
    Assignee: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Satou
  • Patent number: 8809961
    Abstract: An electrostatic discharge (ESD) protection circuit structure includes several diffusion regions and a MOS transistor. The circuit structure includes a first diffusion region of a first type (e.g., P-type or N-type) formed in a first well of the first type, a second diffusion region of the first type formed in the first well of the first type, and a first diffusion region of a second type (e.g., N-type or P-type) formed in a first well of the second type. The first well of the second type is formed in the first well of the first type. The MOS transistor is of the second type and includes a drain formed by a second diffusion region of the second type formed in a second well of the second type bordering the first well of the first type.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: August 19, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Che Tsai, Jam-Wem Lee, Yi-Feng Chang
  • Patent number: 8810004
    Abstract: A resistor-equipped transistor includes a package that provides an external collector connection node (114, 134), an external emitter connection node (120, 140) and an external base connection node (106, 126). The package contains a substrate upon which a transistor (102, 122), first and second resistors, and first and second diodes are formed. The transistor has an internal collector (118, 138), an internal emitter (120, 140) and an internal base (116, 136) with the first resistor (104, 124) being electrically connected between the internal base and the external base connection node and the second resistor (108, 128) being electrically connected between the internal base and the internal emitter.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: August 19, 2014
    Assignee: NXP, B.V.
    Inventors: Stefan Bengt Berglund, Steffen Holland, Uwe Podschus
  • Patent number: 8803205
    Abstract: A semiconductor device includes a gate terminal, at least one control terminal and first and second load terminals and at least one device cell. The at least one device cell includes a MOSFET device having a load path and a control terminal, the control terminal coupled to the gate terminal and a JFET device having a load path and a control terminal, the load path connected in series with the load path of the MOSFET device between the load terminals. The at least one device cell further includes a first coupling transistor having a load path and a control terminal, the load path coupled between the control terminal of the JFET device and one of the source terminal and the gate terminal, and the control terminal coupled to the at least one control terminal of the transistor device.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: August 12, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Hans Weber, Michael Treu
  • Patent number: 8803212
    Abstract: A three-dimensional crossbar array may include a metal layer, and an insulator layer disposed adjacent the metal layer. A trench may be formed in the metal layer to create sections in the metal layer, and a portion of the trench may include an insulator. A hole may be formed in the trench and contact a section of the metal layer. The hole may define a via. A contact region between the via and the section of the metal layer may define a crossbar array.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: August 12, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Hans S. Cho
  • Patent number: 8785972
    Abstract: An electrostatic protection circuit in a semiconductor device includes a first first-conductivity type well extending in a first direction over a semiconductor substrate, a second first-conductivity type well extending in a second direction over the semiconductor substrate and perpendicular to the first direction with one end coupled to a first long side of the first first-conductivity type well, and a second-conductivity type well formed around the first first-conductivity type well and the second first-conductivity type well. It also includes a first high-concentration second-conductivity type region extending in the second direction on a surface of the second first-conductivity type well and a first high-concentration first-conductivity type region extending in the second direction on a surface of the second-conductivity type well while facing the first high-concentration second-conductivity type region.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: July 22, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Yasuyuki Morishita
  • Patent number: 8779516
    Abstract: A second conduction-type MIS transistor in which a source is coupled to a second power source over the surface of a first conduction-type well and a drain is coupled to the open-drain signal terminal is provided. A second conduction-type first region is provided at both sides of the MIS transistor in parallel with a direction where the electric current of the MIS transistor flows and coupled to the open-drain signal terminal. The whole these components are surrounded by a first conduction-type guard ring coupled to the second power source and the outside surrounded by the first conduction-type guard ring is further surrounded by a second conduction-type guard ring coupled to a first power source. Thereby, the semiconductor device is capable of achieving ESD protection of an open-drain signal terminal having a small area and not providing a protection element between power source terminals.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: July 15, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Toshikatsu Kawachi
  • Patent number: 8748987
    Abstract: A standard cell has gate patterns extending in Y direction and arranged at an equal pitch in X direction. End portions of the gate patterns are located at the same position in Y direction, and have an equal width in X direction. A diode cell is located next to the standard cell in Y direction, and includes a plurality of opposite end portions formed of gate patterns that are opposed to the end portions, in addition to a diffusion layer which functions as a diode.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: June 10, 2014
    Assignee: Panasonic Corporation
    Inventors: Tomoaki Ikegami, Kazuyuki Nakanishi, Masaki Tamaru
  • Patent number: 8703594
    Abstract: A method for fabricating a semiconductor device is disclosed. A dummy gate feature is formed between two active gate features in an inter-layer dielectric (ILD) over a substrate. An isolation structure is in the substrate and the dummy gate feature is over the isolation structure. Source/drain (S/D) features are formed at edges of the active gate features in the substrate for forming transistor devices. The disclosed method provides an improved method for reducing parasitic capacitance among the transistor devices. In an embodiment, the improved formation method is achieved by introducing species into the dummy gate feature to increase the resistance of the dummy gate feature.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hsi Yeh, Tsung-Chieh Tsai, Chun-Yi Lee
  • Patent number: 8704311
    Abstract: The semiconductor device includes a first transistor including a first impurity layer of a first conductivity type formed in a first region of a semiconductor substrate, a first epitaxial semiconductor layer formed above the first impurity layer, a first gate insulating film formed above the first epitaxial semiconductor layer, and a first gate electrode formed above the first gate insulating film, and a second transistor including a second impurity layer of the second conductivity type formed in a second region of the semiconductor substrate, a second epitaxial semiconductor layer formed above the second impurity layer and having a thickness different from that of the first epitaxial semiconductor layer, a second gate insulating film formed above the second epitaxial semiconductor layer and having a film thickness equal to that of the first gate insulating film and a second gate electrode formed above the second gate insulating film.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: April 22, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kazushi Fujita, Taiji Ema, Hiroyuki Ogawa
  • Patent number: 8686508
    Abstract: Structures and methods are provided for nanosecond electrical pulse anneal processes. The method of forming an electrostatic discharge (ESD) N+/P+ structure includes forming an N+ diffusion on a substrate and a P+ diffusion on the substrate. The P+ diffusion is in electrical contact with the N+ diffusion. The method further includes forming a device between the N+ diffusion and the P+ diffusion. A method of annealing a structure or material includes applying an electrical pulse across an electrostatic discharge (ESD) N+/P+ structure for a plurality of nanoseconds.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: April 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam, Robert Robison
  • Patent number: 8674445
    Abstract: An electrostatic discharge failure protective element (50) is provided with second conductivity type source region (4) and drain region (5), which are formed at a prescribed interval to sandwich a channel region (3) on the surface of a first conductivity type semiconductor substrate (1); a first conductivity type well region (7) formed to cover the source region; a second conductivity type buried layer (8) formed below the first conductivity type well region; a second conductivity type first impurity region (9a) formed between the drain region and the buried layer to constitute a current path; and a second conductivity type second impurity region (9b) to isolate the well region and the semiconductor substrate one from the other.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 18, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Shuji Fujiwara
  • Patent number: 8664705
    Abstract: A MOS capacitor includes a substrate, a p-type MOS (pMOS) transistor positioned on the substrate, and an n-type MOS (nMOS) transistor positioned on the substrate. More important, the pMOS transistor and the nMOS transistor are electrically connected in parallel. The MOS transistor further includes a deep n-well that encompassing the pMOS transistor and the nMOS transistor.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: March 4, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Kai-Ling Chiu, Chao-Sheng Cheng, Chih-Yu Tseng, Yu-Jen Liu
  • Patent number: 8664724
    Abstract: An electrostatic discharge semiconductor device can include a first conductivity type substrate that includes inner first conductivity type wells therein and a plurality of gate electrodes that are on an active region of the substrate. A second conductivity type well can be located in the substrate beneath the plurality of gate electrodes including at least one slit therein providing electrical contact between the inner first conductivity type wells and a first conductivity type outer well outside the active region.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: March 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-Young Kim, Gi-Young Yang
  • Patent number: 8598667
    Abstract: A semiconductor device includes a thin-film diode (1) and a protection circuit with a protection diode (20). The thin-film diode (1) includes: a semiconductor layer with first, second and channel regions; a gate electrode; a first electrode (S1) connected to the first region and the gate electrode; and a second electrode (D1) connected to the second region. The conductivity type of the thin-film diode (1) may be N-type and the anode electrode of the protection diode (20) may be connected to a line (3) that is connected to either the gate electrode or the first electrode of the thin-film diode (1). Or the conductivity type of the thin-film diode may be P-type and the cathode electrode of the protection diode may be connected to the line that is connected to either the gate electrode or the first electrode of the thin-film diode. The protection circuit includes no other diodes that are connected to the line (3) so as to have a current flowing direction opposite to the protection diode's (20).
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: December 3, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Hiroyuki Moriwaki
  • Patent number: 8598668
    Abstract: A standard cell has gate patterns extending in Y direction and arranged at an equal pitch in X direction. End portions of the gate patterns are located at the same position in Y direction, and have an equal width in X direction. A diode cell is located next to the standard cell in Y direction, and includes a plurality of opposite end portions formed of gate patterns that are opposed to the end portions, in addition to a diffusion layer which functions as a diode.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: December 3, 2013
    Assignee: Panasonic Corporation
    Inventors: Tomoaki Ikegami, Kazuyuki Nakanishi, Masaki Tamaru
  • Patent number: 8592910
    Abstract: A semiconductor body includes a protective structure. The protective structure (10) includes a first and a second region (11, 12) which have a first conductivity type and a third region (13) that has a second conductivity type. The second conductivity type is opposite the first conductivity type. The first and the second region (11, 12) are arranged spaced apart in the third region (13), so that a current flow from the first region (11) to the second region (12) is made possible for the limiting of a voltage difference between the first and the second region (11, 12). The protective structure includes an insulator (14) that is arranged on the semiconductor body (9) and an electrode (16) that is constructed with floating potential and is arranged on the insulator (14).
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: November 26, 2013
    Assignee: AMS AG
    Inventor: Hubert Enichlmair
  • Patent number: 8587071
    Abstract: An ESD protection circuit includes a MOS transistor of a first type, a MOS transistor of a second type, an I/O pad, and first, second, and third guard rings of the first, second, and first types, respectively. The MOS transistor of the first type has a source coupled to a first node having a first voltage, and a drain coupled to a second node. The MOS transistor of the second type has a drain coupled to the second node, and a source coupled to a third node having a second voltage lower than the first voltage. The I/O pad is coupled to the second node. The first, second, and third guard rings are positioned around the MOS transistor of the second type.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: November 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Che Tsai, Jam-Wem Lee, Yi-Feng Chang
  • Publication number: 20130293991
    Abstract: Aspects of the invention provide an electrostatic discharge (ESD) protection device for eliminating current leakage, and a related method. In one embodiment, an ESD protection device includes: a resistor-capacitor (RC) circuit for receiving a power supply voltage; an ESD clamp including a plurality of n-type field-effect transistors (nFETs) for protecting the IC during an ESD event; a trigger circuit for receiving an output of the RC circuit and generating a trigger pulse to turn on the ESD clamp during the ESD event; and an nFET bias selection circuit connected to the trigger circuit, the nFET bias selection circuit for selecting one of: a low voltage supply or a negative bias voltage supply for the trigger circuit, such that the trigger circuit generates a trigger pulse, in response to selecting the negative bias voltage supply, to turn off the ESD clamp during normal operation.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 7, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Albert M. Chu, Joseph A. Iadanza, Mujahid Muhammad, Daryl M. Seitzer, Rohit Shetty, Jane S. Tu
  • Publication number: 20130256801
    Abstract: During various processing operations, ions from process plasma may be transfer to a deep n-well (DNW) formed under devices structures. A reverse-biased diode may be connected to the signal line to protect a gate dielectric formed outside the DNW and is connected to the drain of the transistor formed inside the DNW.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 3, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: David YEN, Sung-Chieh LIN, Kuoyuan (Peter) HSU
  • Patent number: 8536654
    Abstract: A CMOS device having an NMOS transistor with a metal gate electrode comprising a mid-gap metal with a low work function/high oxygen affinity cap and a PMOS transistor with a metal gate electrode comprising a mid gap metal with a high work function/low oxygen affinity cap and method of forming.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: September 17, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Hiroaki Niimi
  • Patent number: 8502317
    Abstract: A level shifter circuit for integrated circuits has one or more inputs that operate in a first voltage domain, and a signal output that operates in a second voltage domain. In some embodiments, the level shifter circuit receives two complementary input signals. The level shifter uses cross-coupled PMOS transistors with drain-bulk breakdown voltage less than the gate-oxide breakdown voltage of high-voltage PMOS transistors to prevent gate-oxide breakdown caused by sub-threshold leakage of auxiliary high-voltage PMOS transistors in the off state. Permanent gate-oxide breakdown is prevented through non-permanent sub-nanoamp drain-bulk junction breakdown. The level shifter circuit has the advantages of small circuit size and low static power consumption.
    Type: Grant
    Filed: February 7, 2010
    Date of Patent: August 6, 2013
    Inventors: Leendert Jan van den Berg, Duncan George Elliott
  • Patent number: 8487371
    Abstract: Systems and methods of fabricating Wafer Level Chip Scale Packaging (WLCSP) devices with transistors having source, drain and gate contacts on one side of the transistor while still having excellent electrical performance with low drain-to-source resistance RDS(on) include using a two-metal drain contact technique. The RDS(on) is further improved by using a through-silicon-via (TSV) technique to form a drain contact or by using a copper layer closely connected to the drain drift.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: July 16, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Daniel M. Kinzer, Steven Sapp, Chung-Lin Wu, Oseob Jeon, Bigildis Dosdos
  • Patent number: 8476710
    Abstract: A vertical complementary field effect transistor (FET) relates to the production technology of semiconductor chips and more particularly to the production technology of power integration circuit. A part of the substrate bottom of the invention extends into the middle layer and form the plug between the two MOS units. There is an output terminal under the substrate layer. When on-state voltage is applied on the gate electrode of the two MOS units, two conduction paths are formed from MOS unit-plug-substrate to the output terminal. This technology can integrate more than two MOS devices. Therefore, the die size is reduced.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: July 2, 2013
    Assignee: Wuxi Versine Semiconductor Corp., Ltd.
    Inventor: Qin Huang
  • Publication number: 20130161750
    Abstract: The disclosure relates to an n-channel laterally diffused metal-oxide-semiconductor device comprising an n+ source (11) in a p-well region (12) and an n+ drain (21) in an n-well region (22), an n-channel (14) extending between the n+ source (11) and the n-well region (22), and a poly gate (3) having a first part (31) above the channel and spanning the entire channel and a second part (32) extending above a part (24) of the n-well region (22) for forming a gate-to-n-well-overlap. The poly gate (3) is a hybrid n+/p+ structure wherein the first part (31) is an n+ part and the second part (32) is a p+ part.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 27, 2013
    Applicants: KATHOLIEKE UNIVERSITEIT LEUVEN, K.U. LEUVEN R&D, IMEC
    Inventors: IMEC, Katholieke Universiteit Leuven, K.U. Leuven R&D
  • Patent number: 8455306
    Abstract: Embodiments include methods for forming an electrostatic discharge (ESD) protection device coupled across input-output (I/O) and common terminals of a core circuit, where the ESD protection device includes first and second merged bipolar transistors. A base of the first transistor serves as collector of the second transistor and the base of the second transistor serves as collector of the first transistor, the bases having, respectively, first and second widths. A first resistance is coupled between an emitter and base of the first transistor and a second resistance is coupled between an emitter and base of the second transistor. ESD trigger voltage Vt1 and holding voltage Vh can be independently optimized by choosing appropriate base widths and resistances. By increasing Vh to approximately equal Vt1, the ESD protection is more robust, especially for applications with narrow design windows, for example, with operating voltage close to the degradation voltage.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: June 4, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Amaury Gendron, Chai Ean Gill, Rouying Zhan
  • Patent number: 8450805
    Abstract: A high-resistance element is connected as a part of a control resistor between a control terminal pad and a protecting element, immediately near the control terminal pad. Thus, even if a high-frequency analog signal leaks to the control resistor, the leaked signal is attenuated by the high-resistance element. This substantially eliminates the possibility of the high-frequency analog signal transmitting to the control terminal pad. Accordingly, an increase in insertion loss can be suppressed.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: May 28, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Tetsuro Asano, Mikito Sakakibara
  • Patent number: 8445358
    Abstract: An object of the present invention is to reduce the influence of a foreign substance adhering to a single crystalline semiconductor substrate and manufacture a semiconductor substrate with a high yield. Another object of the present invention is to manufacture, with a high yield, a semiconductor device which has stable characteristics. In the process of manufacturing a semiconductor substrate, when an embrittled region is to be formed in a single crystalline semiconductor substrate, the surface of the single crystalline semiconductor substrate is irradiated with hydrogen ions from oblique directions at multiple (at least two) different angles, thereby allowing the influence of a foreign substance adhering to the single crystalline semiconductor substrate to be reduced and allowing a semiconductor substrate including a uniform single crystalline semiconductor layer to be manufactured with a high yield.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: May 21, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Keiichi Sekiguchi
  • Patent number: 8431999
    Abstract: A low capacitance transient voltage suppressor is disclosed. The suppressor comprises an N-type heavily doped substrate and an epitaxial layer formed on the substrate. At least one steering diode structure formed in the epitaxial layer comprises a diode lightly doped well and a first P-type lightly doped well, wherein a P-type heavily doped area is formed in the diode lightly doped well and a first N-type heavily doped area and a second P-type heavily doped area are formed in the first P-type lightly doped well. A second P-type lightly doped well having two N-type heavily doped areas is formed in the epitaxial layer. In addition, an N-type heavily doped well and at least one deep isolation trench are formed in the epitaxial layer, wherein the trench has a depth greater than or equal to depths of all the doped wells, so as to separate at least one doped well.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: April 30, 2013
    Assignee: Amazing Microelectronic Corp.
    Inventors: Yu-Shu Shen, Kun-Hsien Lin, Che-Hao Chuang, Ryan Hsin-Chin Jiang
  • Patent number: 8426922
    Abstract: A CMOS structure includes a PMOS portion and an NMOS portion isolated from each other via a P-well region disposed next to the PMOS portion and an N-well region disposed between the P-well region and the NMOS portion, an insulation layer overlying at least the N-well region, and a pad structure disposed over the N-well region. The pad structure further includes: a pad body disposed on the insulation layer; and at least one contact plug penetrating through the insulation layer, having one end coupled to the pad body and the other end coupled to a contact zone in the N-well region; wherein the contact zone is interfaced with the N-well region with P-type dopants.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: April 23, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Fang-Mei Chao, Ming-I Chen, Ying-Ko Chin, Yi-Chiao Wang
  • Patent number: 8415744
    Abstract: The present invention relates to methods and devices for reducing the threshold voltage difference between an n-type field effect transistor (n-FET) and a p-type field effect transistor (p-FET) in a complementary metal-oxide-semiconductor (CMOS) circuit located on a silicon-on-insulator (SOI) substrate. Specifically, a substrate bias voltage is applied to the CMOS circuit for differentially adjusting the threshold voltages of the n-FET and the p-FET. For example, a positive substrate bias voltage can be used to reduce the threshold voltage of the n-FET but increase that of the p-FET, while a negative substrate bias voltage can be used to increase the threshold voltage of the n-FET but reduce that of the p-FET. Further, two or more substrate bias voltages of different magnitudes and/or directions can be used for differentially adjusting the n-FET and p-FET threshold voltages in two or more different CMOS circuits or groups of CMOS circuits.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: April 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Wilfried E. Haensch, Tak H. Ning