As Thin Film Structure (e.g., Polysilicon Resistor) Patents (Class 257/359)
  • Patent number: 8148722
    Abstract: Provided are a method of manufacturing a transparent N-doped p-type ZnO semiconductor layer using a surface chemical reaction between precursors containing elements constituting thin layers, and a thin film transistor (TFT) including the p-type ZnO semiconductor layer. The method includes the steps of: preparing a substrate and loading the substrate into a chamber; injecting a Zn precursor and an oxygen precursor into the chamber, and causing a surface chemical reaction between the Zn precursor and the oxygen precursor using an atomic layer deposition (ALD) technique to form a ZnO thin layer on the substrate; and injecting a Zn precursor and an nitrogen precursor into the chamber, and causing a surface chemical reaction between the Zn precursor and the nitrogen precursor to form a doping layer on the ZnO thin layer.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 3, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Hee Park, Chi Sun Hwang, Hye Yong Chu, Jeong Ik Lee
  • Patent number: 8148771
    Abstract: A semiconductor device 100 includes a semiconductor substrate 14, a connection electrode 12 disposed on an upper surface of the semiconductor substrate 14 and connected to an integrated circuit thereon, a through electrode 20 which penetrates the semiconductor substrate 14 and the connection electrode 20, and an insulation portion 30 interposed between the semiconductor substrate 14 and the through electrode 20. The through electrode 20 is integrally formed to protrude outward from upper surfaces of the semiconductor substrate 14 and the connection electrode 12, and connected to the connection electrode 12 in a region where the through electrode 20 penetrates the connection electrode 12.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: April 3, 2012
    Assignee: Spansion LLC
    Inventors: Masataka Hoshino, Ryoto Fukuyama, Koji Taya
  • Patent number: 8143674
    Abstract: A semiconductor device having a resistor and a method of fabricating the same are provided. The semiconductor device includes a semiconductor substrate having a first circuit region and a second circuit region. A lower interlayer insulating layer is provided over the semiconductor substrate. A first hole passing through the lower interlayer insulating layer in the first circuit region and a second hole passing through the lower interlayer insulating layer in the second circuit region are provided. A first semiconductor pattern and a second semiconductor pattern are sequentially stacked in the first hole. A first resistor having the same crystalline structure as the second semiconductor pattern is provided in the second hole.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: March 27, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Won Ha, Sang-Yoon Kim
  • Patent number: 8125032
    Abstract: A semiconductor process and apparatus includes forming first and second metal gate electrodes (151, 161) over a hybrid substrate (17) by forming the first gate electrode (151) over a first high-k gate dielectric (121) and forming the second gate electrode (161) over at least a second high-k gate dielectric (122) different from the first gate dielectric (121). By forming the first gate electrode (151) over a first SOI substrate (90) formed by depositing (100) silicon and forming the second gate electrode (161) over an epitaxially grown (110) SiGe substrate (70), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (161) having improved hole mobility.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: February 28, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Olubunmi O. Adetutu, Mariam G. Sadaka, Ted R. White, Bich-Yen Nguyen
  • Patent number: 8093585
    Abstract: Each TFT for driving each of a plurality of pixels arranged in a matrix-like configuration is configured using a stagger-type polycrystalline-Si TFT. A gate electrode, which is composed of a high-heat-resistant material capable of resisting high temperature at the time of polycrystalline-Si film formation, is disposed at a lower layer as compared with the polycrystalline-Si layer that forms a channel of each TFT. A gate line, which is composed of a low-resistance material, is disposed at an upper layer as compared with the polycrystalline-Si layer. The gate electrode and the gate line are connected to each other via a through-hole bored in a gate insulation film. Respective configuration components of each organic electro-luminescent element are partially co-used at the time of the line formation, thereby suppressing an increase in the steps, processes, and configuration components.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: January 10, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Etsuko Nishimura, Masatoshi Wakagi, Kenichi Onisawa, Mieko Matsumura
  • Patent number: 8084842
    Abstract: Memory devices and methods for manufacturing are described herein. A memory device as described herein includes a first electrode layer, a second electrode layer, and a thermal isolation structure including a layer of thermal isolation material between the first and second electrode layers. The first and second electrode layers and the thermal isolation structure define a multi-layer stack having a sidewall. A sidewall conductor layer including a sidewall conductor material is on the sidewall of the multi-layer stack. The sidewall conductor material has an electrical conductivity greater than that of the thermal isolation material. A memory element including memory material is on the second electrode layer.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: December 27, 2011
    Assignee: Macronix International Co., Ltd.
    Inventor: Shih-Hung Chen
  • Patent number: 8084830
    Abstract: The memory cell is located at respective intersections between the first wirings and the second wirings. Each of the memory cells has a rectifier element and a variable resistance element connected in series. The rectifier element includes a p type first semiconductor region, and a n type second semiconductor region. The first semiconductor region is formed of, at least in part, silicon-germanium mixture (Si1-xGex (0<x<=1)). The second semiconductor region is formed of silicon (Si).
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: December 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Kanno, Kenichi Murooka, Jun Hirota, Hideyuki Tabata
  • Patent number: 8072030
    Abstract: A semiconductor device, which is connected to a protected device and protects a protected device, includes a semiconductor layer provided on an insulating film; a plurality of source layers which is formed in the semiconductor layer and extends in a first direction; a plurality of drain layers which is formed in the semiconductor layer and extends along with the source layers; a plurality of body regions which is provided between the source layers and the drain layers in the semiconductor layer and extends in the first direction; and at least one body connecting part connecting the plurality of body regions, wherein a first width between the source layer and the drain layer at a first position is larger than a second width between the source layer and the drain layer at a second position, the second position is closer to the body connecting part than the first position.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: December 6, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masayuki Sugiura
  • Patent number: 8018060
    Abstract: A system and method for forming post passivation metal structures is described. Metal interconnections and high quality electrical components, such as inductors, transformers, capacitors, or resistors are formed on a layer of passivation, or on a thick layer of polymer over a passivation layer.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: September 13, 2011
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Chiu-Ming Chou, Chien-Kang Chou
  • Patent number: 8013394
    Abstract: Integrated circuits (IC) and a method of fabricating an IC, where the structure of the IC incorporates a back-end-of-the-line (BEOL) thin film resistor below a first metal layer to achieve lower topography are disclosed. The resistor directly contacts any one of: a contact metal in the front-end-of-the-line (FEOL) structure; first metal layer in the BEOL interconnect; or the combination thereof, to avoid the necessity of forming contacts with differing heights or contacts over varying topography.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Anil K Chinthakindi, Vincent J McGahay
  • Patent number: 7994579
    Abstract: The present invention provides a thin film field-effect transistor comprising a substrate having thereon at least a gate electrode, a gate insulating film, an active layer, a source electrode, and a drain electrode, wherein the active layer is an oxide semiconductor layer, a resistance layer having an electric conductivity that is lower than an electric conductivity of the active layer is provided between the active layer and at least one of the source electrode or the drain electrode, and an intermediate layer comprising an oxide comprising an element having a stronger bonding force with respect to oxygen than that of the oxide semiconductor in the active layer is provided between the active layer and the resistance layer.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: August 9, 2011
    Assignee: FUJIFILM Corporation
    Inventor: Yuichiro Itai
  • Patent number: 7964469
    Abstract: In a method of manufacturing a semiconductor device, a first oxide film is formed in a convex shape on a field insulating film, a polycrystalline silicon film is formed on the first oxide film, and impurities are introduced into the polycrystalline silicon film. The polycrystalline silicon film into which the impurity is introduced is patterned so that a portion above the convex-shaped first oxide film becomes a resistance region of the resistor. A second oxide film is then formed on the patterned polycrystalline silicon film followed by the formation of a third oxide film on the second oxide film. The third oxide film and parts of the second oxide film and the polycrystalline silicon film are then removed to form a planarized surface including surface portions of the second oxide film and the polycrystalline silicon film.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: June 21, 2011
    Assignee: Seiko Instruments Inc.
    Inventor: Yuichiro Kitajima
  • Patent number: 7952173
    Abstract: A nanometric device comprising a substrate; a plurality of conductive spacers of a conductive material, each conductive spacer being arranged on top of and transverse to the substrate, the conductive spacers including respective pairs of conductive spacers defining respective hosting seats each of less than 30 nm wide; and a plurality of nanometric elements respectively accommodated in the hosting seats.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: May 31, 2011
    Assignee: STMicroelectronics S.r.l.
    Inventors: Danilo Mascolo, Gianfranco Cerofolini, Gianguido Rizzotto
  • Patent number: 7939888
    Abstract: The invention provides a display device and a method for manufacturing thereof by increasing a material efficiently as well as simplifying steps. Also, the invention provides a technique for forming a pattern such as a wiring, that is used for forming a display device, to have a predetermined shape with an excellent controllability. The method for manufacturing a display device includes the steps of: forming a lyophobic region; selectively irradiating laser beam in the lyophobic region to form a lyophilic region; selectively discharging a composition, that contains a conductive material, in the lyophilic region to form a gate electrode layer; forming a gate insulating layer and a semiconductor layer over the gate electrode layer; discharging a composition containing a conductive material over the semiconductor layer to form a source electrode layer and a drain electrode layer; and forming a pixel electrode layer on the source or drain electrode layer.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: May 10, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Osamu Nakamura, Shinji Maekawa, Gen Fujii, Toshiyuki Isa
  • Patent number: 7919818
    Abstract: A semiconductor device includes a principal IGBT controllable in accordance with a gate voltage applied to a gate electrode thereof, a current detecting IGBT connected to the principal IGBT in parallel and a current detecting part including a detecting resistor capable of detecting a current passing through the current detecting IGBT. The base region of the current detecting IGBT and the emitter region of the principal IGBT are electrically connected to each other, and the emitter region of the current detecting IGBT and the emitter region of the principal IGBT are electrically connected to each other through the detecting resistor.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: April 5, 2011
    Assignee: Panasonic Corporation
    Inventors: Saichiro Kaneko, Takashi Kunimatsu
  • Patent number: 7880206
    Abstract: Provided is a CMOS image sensor with an asymmetric well structure of a source follower. The CMOS image sensor includes: a well disposed in an active region of a substrate; a drive transistor having one terminal connected to a power voltage and a first gate electrode disposed to cross the well; and a select transistor having a drain-source junction between another terminal of the drive transistor and an output node, and a second gate electrode disposed in parallel to the drive transistor. A drain region of the drive transistor and a source region of the select transistor are asymmetrically arranged.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: February 1, 2011
    Assignee: Crosstek Capital, LLC
    Inventor: Hee-Jeong Hong
  • Patent number: 7880235
    Abstract: A semiconductor integrated circuit device has an SOI substrate comprising an insulating film laminated on a semiconductor support substrate and a semiconductor thin film laminated on the insulating film. A first N-channel MOS transistor, a first P-channel MOS transistor, and a resistor are each disposed on the semiconductor thin film. A second N-channel MOS transistor serving as an electrostatic discharge (ESD) protection element is disposed on a surface of the semiconductor support substrate that is exposed by removing a part of the semiconductor thin film and a part of the insulating film. The second N-channel MOS transistor has a gate electrode, a source region and a drain region surrounding the source region through the gate electrode to maintain a constant distance between the drain region and the source region.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: February 1, 2011
    Assignee: Seiko Instruments Inc.
    Inventor: Naoto Saitoh
  • Patent number: 7876596
    Abstract: A novel nonvolatile memory element, which can be manufactured by a simple and high yield process by using an organic material and has a high on/off ratio, and a method for manufacturing such nonvolatile memory element. A switching layer (14) made of an electrical insulating radical polymer is provided between an anode layer (12) and a cathode layer (16). Further, a hole injection transport layer (13) is provided between the switching layer (14) and the anode layer (12), and an electron injection transport layer (15), between the switching layer (14) and the cathode layer (16). An intermediate layer is provided between the switching layer and the adjacent layer. The radical polymer is preferably nitroxide radical polymer. The switching layer (14), the hole injection transport layer (13) and the electron injection transport layer (15) are formed by being stacked by a wet process.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: January 25, 2011
    Assignee: Waseda University
    Inventors: Hiroyuki Nishide, Kenji Honda, Yasunori Yonekuta, Takashi Kurata, Shigemoto Abe
  • Patent number: 7855112
    Abstract: A fabrication method of a pixel structure includes providing a substrate. A semiconductor layer and a first conductive layer are formed on the substrate in sequence and patterned to form a semiconductor pattern and a data line pattern. A gate insulation layer and a second conductive layer are formed on the substrate in sequence and patterned to form a gate pattern and a scan line pattern connected to each other. A source region, a drain region, a channel region, and a lightly doped region are formed in the semiconductor pattern. A third conductive layer formed on the substrate is patterned to form a source pattern and a drain pattern. A protective layer is formed on the substrate and patterned to form a contact window to expose the drain pattern. A pixel electrode electrically connected to the drain pattern through the contact window is formed on the protective layer.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: December 21, 2010
    Assignee: Au Optronics Corporation
    Inventors: Ming-Yan Chen, Yi-Wei Chen, Yi-Sheng Cheng, Ying-Chi Liao
  • Patent number: 7851863
    Abstract: A static electricity countermeasure component comprising; a ceramic substrate; at least two extractor electrodes opposingly disposed and mutually separated on the ceramic substrate; an over-voltage protective material layer disposed to cover a portion of each extractor electrode and a gap between the extractor electrodes, containing a metal powder and a silicone-based resin; an intermediate layer disposed over the over-voltage protective material layer, containing an insulating powder and a silicone-based resin; and a protective resin layer disposed over the intermediate layer.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: December 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Hideaki Tokunaga, Kenji Nozoe
  • Patent number: 7825476
    Abstract: A method of fabricating a polycrystalline silicon (poly-Si) layer includes providing a substrate, forming an amorphous silicon (a-Si) layer on the substrate, forming a thermal oxide layer to a thickness of about 10 to 50 ? on the a-Si layer, forming a metal catalyst layer on the thermal oxide layer, and annealing the substrate to crystallize the a-Si layer into the poly-Si layer using a metal catalyst of the metal catalyst layer. Thus, the a-Si layer can be crystallized into a poly-Si layer by a super grain silicon (SGS) crystallization method. Also, the thermal oxide layer may be formed during the dehydrogenation of the a-Si layer so that an additional process of forming a capping layer required for the SGS crystallization method can be omitted, thereby simplifying the fabrication process.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: November 2, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Kil-Won Lee
  • Patent number: 7808048
    Abstract: A buried thin film resistor having end caps defined by a dielectric mask is disclosed. A thin film resistor is formed on an integrated circuit substrate. A resistor protect layer is formed over the thin film resistor. A layer of dielectric material is formed over the resistor protect layer. The dielectric material is masked and dry etched to leave a first portion of dielectric material over a first end of the thin film resistor and a second portion of dielectric material over a second end of the thin film resistor. The resistor protect layer is then wet etched using the first and second portions of the dielectric material as a hard mask. Then a second dielectric layer is deposited and vias are etched down to the underlying portions of the resistor protect layer.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: October 5, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Rodney Hill, Victor Torres, William Max Coppock, Richard W. Foote, Jr., Terry L. Lines, Tom Bold
  • Patent number: 7804151
    Abstract: Disclosed are embodiments of a semiconductor structure, a design structure for the semiconductor structure and a method of forming the semiconductor structure. The embodiments reduce harmonics and improve isolation between the active semiconductor layer and the substrate of a semiconductor-on-insulator (SOI) wafer. Specifically, the embodiments incorporate a trench isolation region extending to a fully or partially amorphized region of the wafer substrate. The trench isolation region is positioned outside lateral boundaries of at least one integrated circuit device located at or above the active semiconductor layer of the SOI wafer and, thereby improves isolation. The fully or partially amorphized region of the substrate reduces substrate mobility, which reduces the charge layer at the substrate/BOX interface and, thereby reduces harmonics. Optionally, the embodiments can incorporate an air gap between the wafer substrate and integrated circuit device(s) in order to further improve isolation.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: September 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brennan J. Brown, James R. Elliott, Alvin J. Joseph, Edward J. Nowak
  • Patent number: 7800114
    Abstract: Manufacture of TFTs corresponding to various circuits makes structures thereof complex, which involves a larger number of manufacturing steps. Such an increase in the number of the manufacturing steps leads to a higher manufacturing cost and a lower manufacturing yield. In the invention, a high concentration of impurities is doped by using as masks a tapered resist that is used for the manufacture of a tapered gate electrode, and the tapered gate electrode, and then the tapered gate electrode is etched in the perpendicular direction using the resist as a mask. A semiconductor layer under the thusly removed tapered portion of the gate electrode is doped with a low concentration of impurities.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: September 21, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Satoru Okamoto
  • Patent number: 7795685
    Abstract: A method of manufacturing a thin film transistor substrate includes forming a transistor thin layer pattern, forming a protecting layer, forming a photoresist film, forming a pixel electrode and a conductive layer that are separated from each other, stripping a photoresist pattern to remove the conductive layer using a stripping composition and dissolving the conductive layer. The method of manufacturing a thin film transistor substrate is capable of improving an efficiency of manufacturing process of the thin film transistor substrate. In addition, the stripping composition is recycled.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: September 14, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Sik Park, Shi-Yul Kim, Jong-Hyun Choung, Won-Suk Shin
  • Patent number: 7795701
    Abstract: A first insulation film is provided on a semiconductor substrate. A high resistance element formed from polysilicon is provided on the first insulation film. A second insulation film is provided on the high resistance element. A hydrogen diffusion preventing film having a hydrogen diffusion coefficient smaller than that of the second insulation film is provided on the second insulation film. The hydrogen diffusion preventing film covers a part of the high resistance element.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: September 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Hidenori Iwadate, Takeshi Kobiki
  • Patent number: 7763942
    Abstract: A pixel structure and a fabrication method thereof are provided, wherein a semiconductor pattern and a data line are defined simultaneously by performing a half-tone or grey-tone masking process. In addition, a self-alignment manner is further adopted to fabricate a lightly doped region with symmetric lengths on two sides of a channel region through steps such as photoresist ashing and etching, so as to prevent the problem of misalignment of mask generated when a mask is used to define the lightly doped region in the conventional art. Furthermore, a source pattern and a drain pattern are made to directly contact a source region and a drain region of the semiconductor pattern, such that a process of fabricating a via is omitted. Besides, in the present invention, a common line pattern surrounding the peripheral of the pixel region is also formed to improve the aperture ratio of the pixel structure.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: July 27, 2010
    Assignee: Au Optronics Corporation
    Inventors: Ming-Yan Chen, Yi-Wei Chen, Yi-Sheng Cheng, Ying-Chi Liao
  • Patent number: 7750407
    Abstract: A semiconductor device includes a substrate and a memory cell formed on the substrate. The memory cell includes a word line. The semiconductor device also includes a protection area formed in the substrate, a conductive structure configured to extend the word line to the protection area, and a contact configured to short the word line and the protection area.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 6, 2010
    Assignee: Spansion LLC
    Inventors: Wei Zheng, Jean Yang, Mark Randolph, Ming Kwan, Yi He, Zhizheng Liu, Meng Ding
  • Patent number: 7746608
    Abstract: An ESD protection circuit (710) is guarded by a parallel first precharge elimination circuit (720) relative to an I/O pad (721) and a parallel second precharge elimination circuit (730) relative to a VDD pad (731). The precharge elimination circuits are synchronized with the ESD protection circuit to eliminate any precharge voltage to ground before an ESD pulse affects the I/O pad or VDD pad. A diode (722) is connected between I/O pad and VDD. Circuit (720) is between I/O pad and ground (740) and is powered by the same VDD. Circuit (720) includes a first resistor (723), a first nMOS transistor (724), and a first RC timer including a second resistor (725) and a first capacitor (726). Circuit (730) includes a third resistor (733), a second nMOS transistor (734), and a second RC timer including a fourth resistor (735) and a second capacitor (736).
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: June 29, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Chih-Ming Hung, Charvaka Duvvury
  • Patent number: 7709862
    Abstract: A method for manufacturing an ion implantation mask is disclosed which includes the steps of: forming an oxide film as a protective film over the entire surface of a semiconductor substrate; forming a thin metal film over the oxide film; and forming an ion-inhibiting layer composed of an ion-inhibiting metal over the thin metal film. The obtained ion implantation mask is used to form a deeper selectively electroconductive region.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: May 4, 2010
    Assignees: Honda Motor Co., Ltd., Shindengen Electric Manufacturing Co., Ltd.
    Inventors: Ken-ichi Nonaka, Hideki Hashimoto, Seiichi Yokoyama, Hiroaki Iwakuro, Koichi Nishikawa, Masaaki Shimizu, Yusuke Fukuda
  • Patent number: 7705419
    Abstract: A fuse box of a semiconductor device includes a plurality of metal fuses formed on a first interlayer dielectric of a semiconductor substrate and previously removed in blowing regions thereof; a conductive oxidation layer formed to cover removed blowing regions of the metal fuses; a second interlayer dielectric formed on the first interlayer dielectric including the conductive oxide layer; and a plurality of plugs formed in the second interlayer dielectric to be brought into contact with the metal fuses which are removed in the blowing regions thereof.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: April 27, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Su Ock Chung
  • Patent number: 7701134
    Abstract: An object of the present invention is to provide an EL display device having a high operation performance and reliability. The switching TFT 201 formed within a pixel has a multi-gate structure, which is a structure which imposes an importance on reduction of OFF current value. Further, the current control TFT 202 has a channel width wider than that of the switching TFT to make a structure appropriate for flowing electric current. Morever, the LDD region 33 of the current control TFT 202 is formed so as to overlap a portion of the gate electrode 35 to make a structure which imposes importance on prevention of hot carrier injection and reduction of OFF current value.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: April 20, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kunitaka Yamamoto, Toshimitsu Konuma
  • Patent number: 7687862
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In one embodiment, a semiconductor device includes a first transistor having a first active area, and a second transistor having a second active area. A top surface of the first active area is elevated or recessed with respect to a top surface of the second active area, or a top surface of the first active area is elevated or recessed with respect to a top surface of at least portions of an isolation region proximate the first transistor.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: March 30, 2010
    Assignee: Infineon Technologies AG
    Inventors: Frank Huebinger, Richard Lindsay
  • Patent number: 7671367
    Abstract: A liquid crystal display device and a fabricating method thereof for simplifying a process and improving an aperture ratio are disclosed, including forming a first mask pattern group including a gate line, a gate electrode and a common line; forming a second mask pattern group including a semiconductor pattern and a source/drain pattern having a data line, a source electrode and a drain electrode overlapped thereon on the gate insulating film using a second mask; and forming a third mask pattern group including and a pixel electrode making an interface with the protective film in the pixel hole to be connected to the drain electrode, thereby forming a horizontal electric field with the common electrode, using a third mask.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: March 2, 2010
    Assignee: LG Display Co., Ltd.
    Inventor: Byung Chul Ahn
  • Patent number: 7667245
    Abstract: A driving circuit of a liquid crystal display panel includes a substrate, a plurality of driver IC chips located on the substrate, a current supplier, and a first conductive wire set. The first conductive wire set has a plurality of conductive wire segments for connecting the driver IC chips in parallel to the current supplier. Furthermore, the conductive wire segments each have a form, such that paths formed of the conductive wire segments from the current supplier to the respective driver IC chips have an equal resistance, and, accordingly, each of the driver IC chips obtain the same input voltage. Hence, a problem of band mura is avoided.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: February 23, 2010
    Assignee: Chungwa Picture Tubes, Ltd.
    Inventors: Ming-Zen Wu, Chien-Chih Jen
  • Patent number: 7646067
    Abstract: A CMOS transistor and a method of manufacturing the CMOS transistor are disclosed. An NMOS transistor is formed on a first region of a semiconductor substrate. A PMOS transistor is formed on a second region of a semiconductor substrate. The NMOS transistor includes a first gate conductive layer. The PMOS transistor includes a second gate conductive layer. The first gate conductive layer includes a metal having a nitrogen concentration increasing in a direction from a lower portion toward an upper portion. In addition, the metal has a work function of about 4.0 eV to about 4.3 eV. The third gate conductive layer includes a metal having a nitrogen concentration increasing in a direction from a lower portion toward an upper portion. In addition, the metal has a work function of about 4.7 eV to about 5.0 eV.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: January 12, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gab-Jin Nam, Myoung-Bum Lee
  • Patent number: 7638847
    Abstract: An ESD protection structure includes, in part, a NMOS transistor having a source and drain in a well in a substrate and a gate on the substrate with the source and drain being connected between ground and a series diode, and the gate being connected to ground. The structure further includes a diode having a cathode connected to the input pad and an anode connected to the well so that the diode is reverse-biased in the event of a positive voltage ESD event on the input pad. As a result, in a positive voltage ESD event, the avalanche effect rapidly injects current into the substrate and therefore into the base of the parasitic bipolar transistor so as to trigger the transistor into conduction and discharge the ESD pulse. Alternatively, the diode is a Zener diode and the current is generated by the Zener effect. A complementary structure provides protection against a negative ESD pulse.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: December 29, 2009
    Assignee: Altera Corporation
    Inventors: Hugh Sungki O, Chih-Ching Shih, Cheng-Hsiung Huang, Yow-Juang Bill Liu
  • Patent number: 7615775
    Abstract: A semiconductor apparatus in which a conducting path formed from organic semiconductor molecules as a material has a novel structure and exhibits high mobility, and a manufacturing method for fabricating the same are provided. Fine particles that include a conductor or a semiconductor and organic semiconductor molecules, are alternately bonded through a functional group at both terminals of the organic semiconductor molecules to form a conducting path in a network form such that the conducting path in the fine particles and the conducting path in the organic semiconductor molecules are two-dimensionally or three-dimensionally linked together.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: November 10, 2009
    Assignee: Sony Corporation
    Inventors: Masaru Wada, Shinichiro Kondo, Ryouichi Yasuda
  • Patent number: 7598575
    Abstract: The attenuation of an RF signal on a metal trace in a semiconductor die is substantially reduced by utilizing a number of RF blocking structures that lie on the surface of the substrate directly below the metal trace that carries the RF signal. The RF blocking structures include an isolation ring, and one or more doped regions that are formed inside the isolation ring.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: October 6, 2009
    Assignee: National Semiconductor Corporation
    Inventors: Jeffrey A. Babcock, Yongseon Koh
  • Patent number: 7582938
    Abstract: A technique to enhancing substrate bias of grounded-gate NMOS fingers (ggNMOSFET's) has been developed. By using this technique, lower triggering voltage of NMOS fingers can be achieved without degrading ESD protection in negative zapping. By introducing a simple gate-coupled effect and a PMOSFET triggering source with this technique, low-voltage triggered NMOS fingers have also been developed in power and I/O ESD protection, respectively. A semiconductor device which includes a P-well which is underneath NMOS fingers. The device includes an N-well ring which is configured so that the inner P-well underneath the NMOS fingers is separated from an outer P-well. The inner P-well and outer P-well are connected by a P-substrate resistance which is much higher than the resistance of the P-wells. A P+-diffusion ring surrounding the N-well ring is configured to connect to VSS, i.e., P-taps.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: September 1, 2009
    Assignee: LSI Corporation
    Inventor: Jau-Wen Chen
  • Patent number: 7521761
    Abstract: A layout structure for a CMOS circuit comprises a transistor layer forming P-type transistors 11 and 21 and N-type transistors 12 and 22, and a resistor layer which includes a resistor 13 formed to have a predetermined length and to make plural appropriate portions or the entire of the resistor along a direction of the length satisfy a mask rule necessary for providing VIAs, the resistor being connected to appropriate connecting portions of the P-type transistors and the N-type transistors through the VIAs by metal wires 31 formed of a metal layer, and the resistor having a predetermined circuit resistance which can be set based on the positions of the appropriate connecting portions.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: April 21, 2009
    Assignee: Fujitsu Limited
    Inventor: Yoshihiko Satsukawa
  • Patent number: 7514713
    Abstract: A liquid crystal display panel including an active device array substrate, a second substrate, a sealant, and a liquid crystal layer is provided. The active device array substrate has a display area and a peripheral area surrounding the display area, and includes a first substrate, pixels, signal lines, floating lines, and a common circuit layer. The signal lines are electrically connected with the pixels. The floating lines are disposed in fan-out areas of the peripheral area. Each of the floating lines is aligned with one of the signal lines respectively. The common circuit layer is disposed on an area of the peripheral area outside the fan-out areas. An overall thickness of the floating line and the signal line aligned therewith is equal to a thickness of the common circuit layer. The sealant covers the floating lines, a part of the signal lines and the common circuit layer.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: April 7, 2009
    Assignee: Au Optronics Corporation
    Inventors: Shu-Fen Tsai, Chen-Yu Tu, Jen-Wen Wan
  • Patent number: 7511345
    Abstract: The present invention provides a MOS transistor device for providing ESD protection including at least one interleaved finger having a source, drain and gate region formed over a channel region disposed between the source and the drain regions. The transistor device further includes at least one isolation gate formed in at least one of the interleaved fingers. The device can further include a bulk connection coupled to at least one of the source, drain and gate regions via through at least one of diode, MOS, resistor, capacitor inductor, short, etc. The bulk connection is preferably isolated through the isolation gate.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: March 31, 2009
    Assignees: Sarnoff Corporation, Sarnoff Europe
    Inventors: Benjamin Van Camp, Gerd Vermont
  • Patent number: 7492012
    Abstract: A light emitting device is provided which has a structure for preventing degradation of a light emitting element due to water and oxygen contained in an interlayer insulating film formed between a TFT and the light emitting element. A TFT is formed on a substrate, an inorganic insulating film is formed on the TFT from an inorganic material and serves as a first insulating film, an organic insulating film is formed on the first insulating film from an organic material and serves as a second insulating film, and an inorganic insulating film is formed on the second insulating film from an inorganic material and serves as a third insulating film. Thus obtained is a structure for preventing the second insulating film from releasing moisture and oxygen. In order to avoid defect in forming the film, a portion of the third insulating film where a contact hole is formed is removed alone.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: February 17, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Murakami, Toru Takayama, Kengo Akimoto
  • Patent number: 7485933
    Abstract: A semiconductor device has a first insulating film formed on a semiconductor substrate and resistors disposed on the first insulating film. Each of the resistors is formed of a polycrystalline silicon film having a low concentration impurity region and high concentration impurity regions disposed on opposite sides of the low concentration impurity region. The low concentration impurity regions of the plurality of resistors have different lengths from one another. A second insulating film is disposed on the resistors. Contact holes are formed on the second insulating film and are disposed on the high concentration impurity regions. First metal wirings are connected to the respective contact holes and connect the resistors in series. A second metal wiring is connected to one of the resistors located at one end of the resistors connected in series. The second metal wiring covers the low concentration impurity region of all of the resistors.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: February 3, 2009
    Assignee: Seiko Instruments Inc.
    Inventor: Hirofumi Harada
  • Patent number: 7479666
    Abstract: A driving circuit of a liquid crystal display panel includes a substrate, a plurality of driver IC chips located on the substrate, a current supplier, and a first conductive wire set. The first conductive wire set has a plurality of conductive wire segments for connecting the driver IC chips in parallel to the current supplier. Furthermore, the conductive wire segments each have a form, such that paths formed of the conductive wire segments from the current supplier to the respective driver IC chips have an equal resistance, and, accordingly, each of the driver IC chips obtain the same input voltage. Hence, a problem of band mura is avoided.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: January 20, 2009
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Ming-Zen Wu, Chien-Chih Jen
  • Patent number: 7459793
    Abstract: A method for forming a contact hole, a method for manufacturing a circuit board and a method for manufacturing an electro-optical device that increase the reliability of electrical coupling via a conductive part and prevent wire-breaking due to projections when forming a contact hole in an interlayer film by using a needle, and burying a conductive material in the contact hole is provided.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: December 2, 2008
    Assignee: Seiko Epson Corporation
    Inventors: Mitsuaki Harada, Soichi Moriya
  • Patent number: 7459754
    Abstract: Provided is a semiconductor device in which a resistor and a capacitor are inserted in an input/output signal line that connects an input/output pad and an internal circuit at an input/output terminal in order to prevent damage of the internal circuit due to static electricity. The semiconductor device includes the input/output signal line that connects the input/output pad and the internal circuit. A first electrostatic discharge (ESD) protection circuit is branched from the input/output pad and connected to a power supply line, and a second ESD protection circuit is branched from the input/output pad and connected to a ground line. The resistor is located in the input/output signal line, and the capacitor is branched from the power supply line between the power supply line and the resistor.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: December 2, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seung-won Kang
  • Patent number: 7456478
    Abstract: A reduction of a current capability of a MOS transistor (P1) is compensated by dynamically changing a substrate bias of the MOS transistor (P1) in response to a fluctuation of the power supply, and thus an operating speed is stabilized automatically. An NMOS transistor (N2) generates a current (I2) that changes in response to an extent of fluctuation of the power supply voltage, and then the current (I2) is converted into a voltage via a resistor (R3) to apply a forward bias to a substrate (back gate) of the MOS transistor (P1). When the current capability of the MOS transistor (P1) is reduced owing to a reduction of the power supply voltage, an adjustment is carried out automatically to lower a threshold voltage of the MOS transistor and thus the operating speed can be compensated.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: November 25, 2008
    Assignee: Panasonic Corporation
    Inventor: Masanori Tsutsumi
  • Publication number: 20080185652
    Abstract: Disclosed are a semiconductor structure and a method that allow for simultaneous voltage/current conditioning of multiple memory elements in a nonvolatile memory device with multiple memory cells. The structure and method incorporate the use of a resistor connected in series with the memory elements to limit current passing through the memory elements. Specifically, the method and structure incorporate a blanket temporary series resistor on the wafer surface above the memory cells and/or permanent series resistors within the memory cells. During the conditioning process, these resistors protect the transition metal oxide in the individual memory elements from damage (i.e., burn-out), once it has been conditioned.
    Type: Application
    Filed: April 2, 2008
    Publication date: August 7, 2008
    Applicant: International Business Machines Corporation
    Inventors: Toshijaru Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, Chung H. Lam, Gerhard I. Meijer