As Thin Film Structure (e.g., Polysilicon Resistor) Patents (Class 257/359)
  • Patent number: 7408225
    Abstract: A thin-film formation apparatus possesses a reaction chamber to be evacuated, a placing portion on which a substrate is placed inside the reaction chamber, a gas-dispersion guide installed over the placing portion for supplying a gas onto a substrate surface, a gas-supply port for introducing the gas into the gas-dispersion guide, a gas-dispersion plate disposed on the side of the substrate of the gas-dispersion guide and having multiple gas-discharge pores, a first exhaust port for exhausting, downstream of the gas-dispersion plate, the gas supplied onto the substrate surface from the gas-dispersion plate, and a second exhaust port for exhausting, upstream of the gas-dispersion plate, a gas inside the gas-dispersion guide via a space between the gas-dispersion guide and the gas-dispersion plate.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: August 5, 2008
    Assignee: ASM Japan K.K.
    Inventors: Hiroshi Shinriki, Baiei Kawano, Akira Shimizu
  • Patent number: 7402846
    Abstract: An electrostatic discharge (ESD) protection structure is disclosed. The ESD protection structure includes an active device. The active device includes a plurality of drains. Each of the drains has a contact row and at least one body contact row. The at least one body contact row is located on the active device in a manner to reduce the amount of voltage required for triggering the ESD protection structure.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: July 22, 2008
    Assignee: Atmel Corporation
    Inventors: Stefan Schwantes, Michael Graf, Volker Dudek, Gayle W. Miller, Jr., Irwin Rathbun, Peter Grombach, Manfred Klaussner
  • Patent number: 7394156
    Abstract: A semiconductor integrated circuit device has a plurality of CMOS-type base cells arranged on a semiconductor substrate and m wiring layers, and gate array type logic cells are composed of the base cells and the wiring layers. Wiring within and between the logic cells is constituted by using only upper n (n<m) wiring layers. It becomes possible to shorten a development period and reduce a development cost when a gate array type semiconductor integrated circuit device becomes large in scale.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: July 1, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shinya Tokunaga, Shigeki Furuya, Yuuji Hinatsu
  • Patent number: 7394134
    Abstract: A semiconductor device is provided having a high performance resistance element. In an N-type well isolated by an insulating film, two higher concentration N-type regions are formed. An interlayer insulating film is also formed. In a plurality of openings in the interlayer insulating film, one electrode group having a plurality of electrodes is formed on one N-type region, while a second electrode group having a plurality of electrodes is formed on the other N-type region. The relationship between the two N-type regions is between an island region and an annular region surrounding the island. The annular region of the N-type well between the island region and the annular region serves as a resistor R. Thus, discharge channels for charges applied excessively because of ESD or the like evenly exist in the periphery (four regions) of the one N-type region.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: July 1, 2008
    Assignee: Seiko Epson Corporation
    Inventors: Takayuki Saiki, Kazuhiko Okawa
  • Patent number: 7365397
    Abstract: The semiconductor device comprises a resistance element 26 formed of polysilicon film formed on a silicon substrate 10, which includes a resistor part 26a having a resistance value set at a prescribed value, contact parts 26b formed on both sides of the resistor part 26a and connected to a line for applying a fixed potential, and a heat radiation part 26c connected to the contact part 26b, whereby the semiconductor device can include the resistance element having a small parasitic capacitance and good heat radiation.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: April 29, 2008
    Assignee: Fujitsu Limited
    Inventor: Hiroshi Nomura
  • Patent number: 7361957
    Abstract: The present invention relates to a device for electrostatic discharge protection (ESD).
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: April 22, 2008
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Kil Ho Kim, Yong Icc Jung
  • Patent number: 7358592
    Abstract: A semiconductor integrated circuit device having a metal thin-film resistance includes a lower insulation film formed over a semiconductor substrate via another lawyer, a metal interconnection pattern formed on the lower insulation film, an underlying insulation film formed on the lower insulation film and the metal interconnection pattern, and a contact hole formed in said underlying insulation film on the metal interconnection pattern, wherein the metal thin-film resistance is formed so as to extend from a top surface of the underlying insulation film to the contact hole in electrical contact with the metal interconnection pattern in the contact hole, at least a part of constituting elements of the semiconductor integrated circuit other than the metal thin-film resistance is disposed in a region underneath the metal thin-film resistance.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: April 15, 2008
    Assignee: Ricoh Company, Ltd.
    Inventor: Tohru Ueno
  • Patent number: 7355250
    Abstract: An electrostatic discharge (ESD) device with a parasitic silicon controlled rectifier (SCR) structure and controllable holding current is provided. A first distance is kept between a first N+ doped region and a first P+ doped region, and a second distance is kept between a second P+ doped region and a third N+ doped region. In addition, the holding current of the ESD device can be set to a specific value by modulating the first distance and the second distance. The holding current is in inverse proportion to the first distance and the second distance.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: April 8, 2008
    Assignee: System General Corp.
    Inventors: Chih-Feng Huang, Ta-yung Yang, Jenn-yu G. Lin, Tuo-Hsin Chien
  • Patent number: 7355282
    Abstract: A system and method for forming post passivation metal structures is described. Metal interconnections and high quality electrical components, such as inductors, transformers, capacitors, or resistors are formed on a layer of passivation, or on a thick layer of polymer over a passivation layer.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: April 8, 2008
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Chien-Kang Chou, Chiu-Ming Chou
  • Patent number: 7327000
    Abstract: In a method of making graphite devices, a preselected crystal face of a crystal is annealed to create a thin-film graphitic layer disposed against selected face. A preselected pattern is generated on the thin-film graphitic layer. A functional structure includes a crystalline substrate having a preselected crystal face. A thin-film graphitic layer is disposed on the preselected crystal face. The thin-film graphitic layer is patterned so as to define at least one functional structure.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: February 5, 2008
    Assignee: Georgia Tech Research Corp.
    Inventors: Walt A. DeHeer, Claire Berger, Phillip N. First
  • Patent number: 7326999
    Abstract: A chip resistor (R1) includes a resistor element (1) having a first surface (1a) and a second surface (1b) opposite to the first surface. Two main electrodes (21), spaced from each other, are provided on the first surface (1a), while two auxiliary electrodes (22), spaced from each other, are provided on the second surface (1b). The auxiliary electrodes face the main electrodes (21) via the resistor element (1). The main electrodes (21) and the auxiliary electrodes (22) are made of the same material.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: February 5, 2008
    Assignee: Rohm Co., Ltd.
    Inventor: Torayuki Tsukada
  • Patent number: 7323751
    Abstract: A thin film resistor and at least one metal interconnect are formed in an integrated circuit. A first dielectric layer is formed over a metal interconnect layer. A thin film resistor is formed on the first dielectric layer and a second dielectric layer formed over the thin film resistor. Thin film resistor vias and the at least one trench are formed concurrently in the second dielectric layer. A trench via is then formed in the at least one trench. The trench via, the at least one trench and the thin film resistor vias are filled with a contact material layer to form thin film resistor contacts and at least one conductive line coupled to the metal interconnect layer.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: January 29, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Eric Williams Beach, Rajneesh Jaiswal
  • Patent number: 7312515
    Abstract: A semiconductor apparatus includes a wiring pattern, an insulating film, and a thin-metal-film resistor element. The insulating film is formed on the wiring pattern having connection holes vertically penetrating there-through to expose part of the wiring pattern at bottom regions of the connection holes. The connection holes are arranged with a space there-between. The thin-metal-film resistor element is formed on the insulating film and extending to continuously overlay and contact surfaces of the insulating film, inner walls of the connection holes, and the wiring pattern at the bottom regions of the connection holes.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: December 25, 2007
    Assignee: Ricoh Company, Ltd.
    Inventors: Kimihiko Yamashita, Yasunori Hashimoto
  • Patent number: 7312470
    Abstract: The present invention relates to a TFT array panel and a fabricating method thereof. A gate insulating layer and a passivation layer are formed by printing organic insulating material in order to simplify the fabricating process. The inventive TFT panel includes an insulating substrate, and a gate wire formed on the insulating substrate. The gate wire includes a gate line and a gate pad connected to one end of the gate line. A gate insulating layer is formed on the insulating substrate while exposing the gate pad and a portion of the gate line close to the gate pad. A semiconductor pattern is formed on the gate insulating layer. A data wire is formed on the gate insulating layer. The data wire includes a data line, a source electrode connected to the data line, a drain electrode facing the source electrode and a data pad connected to one end of the data line. A passivation layer is formed on the gate insulating layer while exposing the data pad and a portion of the data line close to the data pad.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: December 25, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Seong Byun, Kun-Jong Lee, Hyun-Su Lim, Jong-Hwan Cha, Bae-Hyoun Jung
  • Publication number: 20070272983
    Abstract: An active device array substrate, including a substrate, a plurality of pixel units, a plurality of first lead wires, an insulating layer, a plurality of second lead wires and a passivation layer, is provided. The active device array substrate has a display area and a peripheral area. The pixel units are disposed in the display area of the substrate. The first lead wires and the second lead wires are disposed in the peripheral area, and electrically connected to the pixel units respectively. The first lead wires have two opposite first tips. Moreover, the first lead wires are covered by the insulating layer having at least a first opening to expose the two opposite first tips. Additionally, the second lead wires are covered by the passivation layer.
    Type: Application
    Filed: October 27, 2006
    Publication date: November 29, 2007
    Applicant: QUANTA DISPLAY INC.
    Inventors: Chin-Yuen Liao, Ko-Ching Yang
  • Patent number: 7298010
    Abstract: A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: November 20, 2007
    Assignee: Sandia Corporation
    Inventor: Kwok K. Ma
  • Patent number: 7294875
    Abstract: A programmable structure and device and methods of forming and using the structure and device are disclosed. The structure includes a soluble electrode, an ion conductor, and an inert electrode. Upon application of a sufficient voltage, a conductive region forms within or on the ion conductor and between the electrodes. The presence or absence of the conductive region can be used to store information in memory devices.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: November 13, 2007
    Assignee: Axon Technologies Corporation
    Inventor: Michael N. Kozicki
  • Patent number: 7282769
    Abstract: The electronic device comprises a thin-film transistor (10) and can be obtained from two substrates (1, 11). In order to preclude delamination at a non-adhesive interface between a metal pattern (24, 29) and an organic layer (4), the metal pattern (24, 29) comprises apertures (30). Through these apertures (30), adhesion between the organic layer (4, 5) and organic material at the surface (111) of one of the substrates (11) can be brought about. The electronic device can be manufactured by use of microcontact printing.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: October 16, 2007
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Gerjan Franciscus Arthur Van De Walle, Andreas Hubertus Montree
  • Patent number: 7276767
    Abstract: The present invention provides a thin film resistor and method of manufacture therefor. The thin film resistor comprises a resistive layer located on a first dielectric layer, first and second contact pads located on the resistive layer, and a second dielectric layer located over the resistive layer and the first and second contact pads. In an illustrative embodiment, the thin film resistor further includes a first interconnect that contacts the first contact pad and a second interconnect that contacts the second contact pad.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: October 2, 2007
    Assignee: Agere Systems Inc.
    Inventors: Robert D. Huttemann, George J. Terefenko
  • Patent number: 7274047
    Abstract: An electrostatic discharge (ESD) protection circuit in a semiconductor integrated circuit (IC) having protected circuitry. The ESD protection circuit includes a silicon controlled rectifier (SCR) having at least one first type high dopant region coupled to a first reference potential of the protected circuitry, and at least one second type high dopant region coupled to a second reference potential of the IC. The SCR is triggered by an external on-chip trigger device, which is adapted for injecting a trigger current into at least one gate of the SCR.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: September 25, 2007
    Assignees: Sarnoff Corporation, Sarnoff Europe BVBA
    Inventors: Cornelius Christian Russ, Markus Paul Josef Mergens, John Armer, Koen Gerard Maria Verhaege
  • Publication number: 20070210386
    Abstract: A plasma display apparatus which in its driving circuit mounts at least one of IGBTs having diodes built-in which are reverse conducting in a driving device which supplies a light emitting current and IGBTs having diodes built-in which have a reverse blocking function in a driving device which collects and charges the power.
    Type: Application
    Filed: January 19, 2007
    Publication date: September 13, 2007
    Inventor: Mutsuhiro Mori
  • Patent number: 7250660
    Abstract: Circuits are described that provide electrostatic discharge protection for I/O circuits that support the low voltage differential signaling (LVDS) and on-chip termination (OCT) standards. At least one additional transistor is connected across an I/O transistor. In the case of LVDS, a pair of stacked transistors is used in which the distance between the source/drain region and a well tap is considerably greater for the transistor connected to the I/O pad. A PMOS transistor and an NMOS transistor may also be connected in series between a first node such as a power supply node and the I/O pad. An OCT circuit is also disclosed in which the spacing between the source/drain region and a well tap in the OCT transistor is smaller than that in the I/O transistor.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: July 31, 2007
    Assignee: Altera Corporation
    Inventors: Cheng-Hsiung Huang, Chih-Ching Shih, Jeffrey Tyhach, Guu Lin, Chiakang Sung, Stephanie T. Tran
  • Patent number: 7235846
    Abstract: The present invention provides an ESD protection device or structure that exploits the high conductivity of a heavily doped heterojunction base of a standard SiGe bipolar junction transistor (BJT) cell. This improved ESD protection scheme further uses the combination of trench isolation and buried subcollector layer of the SiGe BJT to confine ESD current, minimizing parasitic substrate leakage and achieving large forward voltages while imposing minimal parasitic capacitive loads on a protected active device. Since the ESD protection structure is formed from conventional SiGe BJT transistor cells through modification of the contact metallization, it can be fabricated in an available SiGe BiCMOS fabrication process without additional processing steps, and characterization data already available for the SiGe BJTs can be used to model the performance of the ESD protection devices.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: June 26, 2007
    Assignee: WJ Communications, Inc.
    Inventor: Greg Fung
  • Patent number: 7221026
    Abstract: The invention includes semiconductor constructions having a thin film stacked resistor in electrical connection with a source/drain region of a transistor device. The resistor includes first and second crystalline layers which may or may not differ from one another. One of the first and second crystalline layers comprises doped silicon/germanium, and the other comprises doped silicon. The transistor device and resistor can be part of an SOI construction formed over a conventional substrate (such as a monocrystalline silicon wafer) or a non-conventional substrate (such as one or more of glass, aluminum oxide, silicon dioxide, metal and plastic). The invention also includes processes of forming semiconductor constructions, and in particular aspects, includes processes of forming resistor constructions.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: May 22, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 7211868
    Abstract: A protection circuit device using a MOSFET has a plural of conductive paths separated electrically, a MOSFET chip integrating two power MOSFETs in one chip where a gate electrode and a source electrode are fixed on the desired conductive path, conductive material provided on a common drain electrode of the MOSFET, and insulating resin covering said MOSFET and supporting said conductive path in one body. Removing a drawing-around of the common drain electrode and fixing the source electrode directly on the conductive path, low ON-state resistance is realized.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: May 1, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Noriaki Sakamoto, Yoshiyuki Kobayashi, Hirokazu Fukuda, Hiroki Etou, Kouji Takahashi
  • Patent number: 7208814
    Abstract: A resistive device includes a resistive region of a semiconductor material that includes a first region and a second region, wherein the first region has a higher dopant concentration than the second region, and wherein a resistance-determining width of a current path through the first region is determined by a portion of a doping boundary between the first region and the second region.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: April 24, 2007
    Assignee: Infineon Technologies AG
    Inventor: Stefan Pompl
  • Patent number: 7205612
    Abstract: A device and method are described for forming a grounded gate NMOS (GGNMOS) device used to provide protection against electrostatic discharge (ESD) in an integrated circuit (IC). The device is achieved by adding n-wells below the source and drain regions. By tailoring the dopant concentration profiles of the p-well and n-wells provided in the fabrication process, peak dopant concentrations are moved below the silicon surface. This moves ESD conduction deeper into the IC where thermal conductivity is improved, thereby avoiding thermal damage occurring with surface conduction. The device does not require a salicidation block or additional implantation and uses standard NMOS fabrication processing steps, making it advantageous over prior art solutions.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: April 17, 2007
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun Cai, Keng Foo Lo
  • Patent number: 7202165
    Abstract: In the case that a stacked layer, in which another metal layer is stacked on an Al layer or Al alloy layer having a low resistance, is used as a wiring material, an etchant is provided which can etch to a substantially equal etching rate by executing only one etching on the each metal layer composing the stacked layer. A method of manufacturing a substrate for an electronic device uses the etchant, producing an electronic device having the substrate. In order to achieve the object, the etchant has fluoric acid, periodic acid and sulfuric acid wherein the total weight ratio of the fluoric acid and periodic acid is 0.05˜30 wt %, the weight ratio of the sulfuric acid is 0.05˜20 wt %, the weight ratio of periodic acid to fluoric acid is 0.01˜2 wt %. Also each layer of wiring (5, 12, 14) formed by stacking Al layer or Al alloy layer and Ti layer or Ti alloy layer can be uniformly etched to substantially equal etching rate by the etchant.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: April 10, 2007
    Assignee: LG.Philips LCD Co., Ltd
    Inventor: Gyoo Chul Jo
  • Patent number: 7196377
    Abstract: In a semiconductor device having an electrostatic discharge protection arrangement, a semiconductor substrate exhibits a first conductivity type. First and second impurity regions each exhibiting a second conductivity type are formed in the semiconductor substrate. A channel region is formed in the semiconductor substrate between the first and second impurity regions. A first conductive area is defined on the first impurity region in the vicinity of the channel region. A second conductive area is defined on the first impurity region so as to be supplied with an electrostatic discharge current. A third conductive area is defined on the first impurity region to establish an electrical connection between the first and second conductive area. At least one heat-radiation area is defined in the third conductive area so as to be at least partially isolated therefrom and thermally contacted with the first conductive area.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: March 27, 2007
    Assignee: NEC Electronics Corporation
    Inventors: Noriyuki Kodama, Koichi Sawahata, Morihisa Hirata
  • Patent number: 7180139
    Abstract: A pixel structure controlled by a scan line and a data line on a substrate is provided. The pixel structure comprises a thin film transistor, a resistance wire, a first pixel electrode, and a second pixel electrode, which are disposed on the substrate. Additionally, the thin film transistor is electrically connected to the scan line, the data line, and the resistance wire. Further, the first pixel electrode is electrically connected to the thin film transistor and the second pixel electrode is electrically connected to the thin film transistor by the resistance wire. Especially, a method of manufacturing a pixel structure is also provided.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: February 20, 2007
    Assignee: Au Optronics Corporation
    Inventor: Han-Chung Lai
  • Patent number: 7176489
    Abstract: A thin-film transistor includes a substrate, and a gate including a double-layered structure having first and second metal layers provided on the substrate, the first metal layer being wider than the second metal layer by 1 to 4 ?m. A method of making such a thin-film transistor includes the steps of: depositing a first metal layer on a substrate, depositing a second metal layers directly on the first metal layer; forming a photoresist having a designated width on the second metal layer; patterning the second metal layer via isotropic etching using the photoresist as a mask; patterning the first metal layer by means of an anisotropic etching using the photoresist as a mask, the first metal layer being etched to have the designated width, thus forming a gate having a laminated structure of the first and second metal layers; and removing the photoresist.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: February 13, 2007
    Assignee: LG. Philips LCD. Co., Ltd.
    Inventors: Byung-Chul Ahn, Hyun-Sik Seo
  • Patent number: 7173283
    Abstract: A semiconductor device with high reliability and operation performance is manufactured without increasing the number of manufacture steps. A gate electrode has a laminate structure. A TFT having a low concentration impurity region that overlaps the gate electrode or a TFT having a low concentration impurity region that does not overlap the gate electrode is chosen for a circuit in accordance with the function of the circuit.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: February 6, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Etsuko Fujimoto, Satoshi Murakami, Shunpei Yamazaki, Shingo Eguchi
  • Patent number: 7166861
    Abstract: The present invention provides a thin-film transistor that is formed by using a patterning method capable of forming a semiconductor channel layer in sub-micron order and a method for manufacturing thereof that provides a thin-film transistor with a larger area, and suitable for mass production. These objects are achieved by a thin-film transistor formed on a substrate 1 with a finely processed concavoconvex surface 2, in which a source electrode and a drain electrode are formed on adjacent convex portions of the concavoconvex surface 2, with a channel and a gate being formed on a concave area between the convex portions. A gate electrode 5, a gate insulating film 6 and a semiconductor channel layer 7 are laminated in this order on the concave area from the bottom surface of the concave portion toward the top surface.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: January 23, 2007
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Wataru Saito, Yudai Yamashita
  • Patent number: 7148556
    Abstract: A p-type polysilicon resistor formed in the inter-level dielectric layer contains an implanted diode. A positive voltage applied to the diode modulates the depletion region of the diode and changes the absolute resistance of the p-type polysilicon resistor. This modulation occurs not only horizontally, but also vertically. The fact that the tunable resistor is a p-type polysilicon resistor means that this structure can easily be integrated into the process since polysilicon is used as a gate material for basic CMOS processing.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: December 12, 2006
    Assignee: LSI Logic Corporation
    Inventors: Jonathan A. Shaw, Sean Erickson, Kevin Nunn
  • Patent number: 7145204
    Abstract: A semiconductor circuit for protecting an I/O pad against ESD events comprising a pMOS transistor (510) in a first n-well (511) having its source connected to Vdd and the first n-well, and its drain connected to the I/O pad; the transistor has a finger-shaped contact (513) to the first n-well. Further a finger-shaped diode (520) with its cathode (521) located in a second n-well and connected to the I/O pad, and its anode connected to ground. The anode is positioned between the cathode and the first n-well, whereby the finger-shaped anode and cathode are oriented approximately perpendicular to the finger-shaped transistor n-well contact. Further a third finger-shaped n-well (551) positioned between the first n-well and the diode, the third n-well connected to ground and approximately perpendicular to the first n-well contact, acting as a guard wall (550).
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: December 5, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Charvaka Duvvury, Gianluca Boselli, John E. Kunz, Jr.
  • Patent number: 7112867
    Abstract: A high resistance region may be used to isolate the body of a first transistor from a body contact.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: September 26, 2006
    Assignee: Intel Corporation
    Inventors: Ian Rippke, Stewart Taylor
  • Patent number: 7102198
    Abstract: An organic electroluminescent display device includes a first substrate, a second substrate spaced apart and facing the first substrate, a switching thin film transistor disposed on an inner surface of the first substrate, a driving thin film transistor electrically connected to the switching thin film transistor, a connecting electrode electrically connected to the driving thin film transistor, a first electrode disposed on an inner surface of the second substrate, a partition wall disposed on the first electrode and having a transmissive hole corresponding to a pixel region between the first and second substrates, an organic layer disposed within the transmissive hole on the first electrode, and a second electrode disposed on the organic layer, wherein the second electrode is electrically connected to the driving thin film transistor through the connecting electrode.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: September 5, 2006
    Assignee: LG.Philips LCD Co., Ltd.
    Inventors: Jae-Yong Park, Choong-Keun Yoo, Ock-Hee Kim, Nam-Yang Lee, Kwan-Soo Kim
  • Patent number: 7098509
    Abstract: In one embodiment, a concentric ring ESD structure includes a first p-type region and a second p-type region are formed in a layer of semiconductor material. The two p-type regions are coupled together with a floating n-type buried layer. The first and second p-type regions form a back-to-back diode structure with the floating n-type buried layer. A pair of shorted n-type and p-type contact regions is formed in each of the first and second regions. An isolation region is formed between the first and second p-type regions.
    Type: Grant
    Filed: January 2, 2004
    Date of Patent: August 29, 2006
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Peter J. Zdebel, Diann Michelle Dow
  • Patent number: 7098522
    Abstract: A high voltage device. A high voltage MOS transistor is applied in the ESD protection device to the structure of which a doped region is added, generating a parasitic semiconductor controlled rectifier (SCR) having a shorter discharge path such that the SCR has faster response enhancing ESD protection.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: August 29, 2006
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Geeng-Lih Lin, Yeh-Ning Jou, Ming-Dou Ker
  • Patent number: 7061052
    Abstract: An input protection circuit capable of precisely bypassing a surge current to a power source terminal and protecting the gate of a protective transistor from an electrostatic surge. The input protection circuit has an input terminal which receives an input signal, a first power source terminal which receives a first power source electric potential, and a first protective power source potential line connected to the first power source terminal for supplying the first power source electric potential to an input protection circuit. The input protection circuit has a first input protection transistor of a first conductive type having a drain connected to the input terminal, a gate and a source connected to the first protective power source potential line.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: June 13, 2006
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Katsuhiro Kato
  • Patent number: 7020857
    Abstract: A method and apparatus for analyzing an integrated circuit design for pnpn structures which are likely to latchup or cause injection of noise into the substrate. Once qualifying pnpn structures are identified, the method and apparatus automatically inserts a noise and latchup suppression circuit of the designers' choice into the pnpn structure to eliminate the latchup and/or noise concerns.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: March 28, 2006
    Assignee: International Business Machines Corporation
    Inventors: Raminderpal Singh, Steven Howard Voldman
  • Patent number: 7002219
    Abstract: An electrically programmable fuse includes a metal-oxide-semiconductor (MOS) programmable transistor that is gate-source coupled by a resistive element. The resistive element can comprise a gate-source coupled MOS transistor. If the MOS transistor is unprogrammed, then the resistive element ensures that the programmable transistor is turned off during read operations. However, when a programming voltage is applied across the source and drain terminals of the programmable transistor, the resistive element allows the programming voltage to be capacitively coupled to the gate of the programmable transistor from its drain. This turns the programmable transistor on, thereby reducing the snapback voltage of the programmable transistor, and hence, the required programming voltage. Once the snapback mode is entered, current flow through the programmable transistor increases until thermal breakdown occurs and the programmable transistor shorts out.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: February 21, 2006
    Assignee: Xilinx, Inc.
    Inventors: Jan L. de Jong, James Karp, Leon Ly Nguyen
  • Patent number: 6995432
    Abstract: A MIS type semiconductor device and a method for fabricating the same characterized in that impurity regions are selectively formed on a semiconductor substrate or semiconductor thin film and are activated by radiating laser beams or a strong light equivalent thereto from above so that the laser beams or the equivalent strong light are radiated onto the impurity regions and on an boundary between the impurity region and an active region adjoining the impurity region.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: February 7, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuhiko Takemura
  • Patent number: 6992651
    Abstract: To provide a constitution capable of reducing production cost in a semiconductor device for display of a type integrally formed with a drive circuit with a digital signal as an input signal and a pixel matrix unit, a signal dividing circuit is formed on a substrate where drive circuits and a pixel matrix unit are to be formed simultaneously with the drive circuits and the pixel matrix unit in view of fabrication steps by which fabrication steps of the signal dividing circuit per se and steps required for connecting the signal dividing circuit to wirings on the substrate can be dispensed with without adding further steps.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: January 31, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Mitsuaki Osame, Yasushi Ogata
  • Patent number: 6969903
    Abstract: A resistor device structure and method of manufacture therefore, wherein the resistor device structure invention includes a plurality of alternating conductive film and insulative film layers, at least two of the conductive film layers being electrically connected in parallel to provide for high current flow through the resistor device at high frequencies with increased temperature and mechanical stability. The alternating conductive film and insulative film layers may be of a planar or non-planar geometric spatial orientation. The alternating conductive film and insulative film layers may include lateral and vertical portions designed to enable a uniform current density flow within the structure itself through a self-ballasting effect within the physical resistor.
    Type: Grant
    Filed: January 19, 2004
    Date of Patent: November 29, 2005
    Assignee: International Business Machines Corporation
    Inventors: Ebenezer E. Eshun, Steven H. Voldman
  • Patent number: 6963111
    Abstract: A pMOS transistor (601) is located in an n-well (602) and has at least one gate (603). Transistor (601) is connected between power pad Vdd or I/O pad (604) and ground potential Vss (605). Gate (603) is connected to power pad (604). The n-well (602) is capacitively (620) coupled to ground (605), decoupled from the transistor source (606) and floating under normal operating conditions. Under an ESD event, the diode formed by the source (606) and the n-well (602) is forward biased (n-well negatively biased) to turn on the lateral pnp transistor to discharge the ESD current. The well voltage keeps increasing up to the value that triggers the lateral bipolar pnp transistor. The ESD protection is scalable with the width of gate (603), improving with shrinking gate width.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: November 8, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Vijay K. Reddy, Gianluca Boselli, Ekanayake A. Amerasekera
  • Patent number: 6943371
    Abstract: A thin film transistor and a method for fabricating the same. The thin film transistor comprises a substrate and a patterned semiconductive layer formed on the substrate, wherein the semiconductive layer comprises a channel region and doped regions adjacent to the channel region. A gate insulating layer is formed on the above structure. A gate electrode is located on the gate insulating layer above the channel region. Source and drain electrodes are located on the gate insulating layer adjacent to the semiconductive layer. A dielectric layer having contact holes is formed on the above structure and a patterned conductive layer is formed on predetermined parts of the dielectric layer electrically connecting the doped regions to the source and drain electrode through the contact holes.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: September 13, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Chen-Ming Chen, Yung-Fu Wu
  • Patent number: 6933574
    Abstract: An organic electroluminescent display device includes a first substrate, a second substrate spaced apart and facing the first substrate, a switching thin film transistor disposed on an inner surface of the first substrate, a driving thin film transistor electrically connected to the switching thin film transistor, a connecting electrode electrically connected to the driving thin film transistor, a first electrode disposed on an inner surface of the second substrate, a partition wall disposed on the first electrode and having a transmissive hole corresponding to a pixel region between the first and second substrates, an organic layer disposed within the transmissive hole on the first electrode, and a second electrode disposed on the organic layer, wherein the second electrode is electrically connected to the driving thin film transistor through the connecting electrode.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: August 23, 2005
    Assignee: LG.Philips LCD Co., Ltd.
    Inventors: Jae-Yong Park, Choong-Keun Yoo, Ock-Hee Kim, Nam-Yang Lee, Kwan-Soo Kim
  • Patent number: 6921962
    Abstract: A thin film resistor (60) is contained between two metal interconnect layers (40, 100) of an integrated circuit. Contact may be made to the resistor (60) through vias (95) from the metal layer (100) above the resistor (60) to both the thin film resistor (60) and the underlying metal layer (40) simultaneously. The resistor (60) may include portions of a hard mask (70) under the vias (95) to protect the resistor material (60) during the via (95) etch. This design provides increased flexibility in fabricating the resistor (60) since processes, materials, and chemicals do not have to satisfy the conditions of both the resistor (60) and the rest of the integrated circuit (especially the interconnect layer 40) simultaneously.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: July 26, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Fred D. Bailey, Stuart M. Jacobsen
  • Patent number: 6911688
    Abstract: A semiconductor display device with an interlayer insulating film in which surface levelness is ensured with a limited film formation time, heat treatment for removing moisture does not take long, and moisture in the interlayer insulating film is prevented from escaping into a film or electrode adjacent to the interlayer insulating film. A TFT is formed and then a nitrogen-containing inorganic insulating film that transmits less moisture compared to organic resin film is formed so as to cover the TFT. Next, organic resin including photosensitive acrylic resin is applied and an opening is formed by partially exposing the organic resin film to light. The organic resin film where the opening is formed, is then covered with a nitrogen-containing inorganic insulating film which transmits less moisture than organic resin film does.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: June 28, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Murakami, Masahiko Hayakawa, Kiyoshi Kato, Mitsuaki Osame, Takashi Hirosue, Saishi Fujikawa