Including Additional Component In Same, Non-isolated Structure (e.g., Transistor With Diode, Transistor With Resistor, Etc.) Patents (Class 257/577)
  • Patent number: 7381997
    Abstract: A structure and method of fabricating lateral diodes. The diodes include Schottky diodes and PIN diodes. The method of fabrication includes forming one or more doped regions and more trenches in a silicon substrate and forming metal silicides on the sidewalls of the trenches. The fabrication of lateral diodes may be integrated with the fabrication of field effect, bipolar and SiGe bipolar transistors.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: June 3, 2008
    Assignee: International Business Machines Corporation
    Inventors: Douglas Duane Coolbaugh, Jeffrey Bowman Johnson, Xuefeng Liu, Bradley Alan Orner, Robert Mark Rassel, David Charles Sheridan
  • Publication number: 20080102593
    Abstract: A method for fabricating a semiconductor including defining a first component region and a second component region in a semiconductor body is provided. A first epitaxial layer is formed through the first component region. A second epitaxial layer is formed over the first epitaxial layer, including configuring the physical dimensions of a first active zone of the first component region independent of a second active zone of the second component region via the first epitaxial layer and the second epitaxial layer. In one embodiment, the first component is a radio-frequency transistor and the second component is a varactor.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 1, 2008
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thomas Meister, Herbert Schafer, Josef Bock, Rudolf Lachner
  • Patent number: 7358592
    Abstract: A semiconductor integrated circuit device having a metal thin-film resistance includes a lower insulation film formed over a semiconductor substrate via another lawyer, a metal interconnection pattern formed on the lower insulation film, an underlying insulation film formed on the lower insulation film and the metal interconnection pattern, and a contact hole formed in said underlying insulation film on the metal interconnection pattern, wherein the metal thin-film resistance is formed so as to extend from a top surface of the underlying insulation film to the contact hole in electrical contact with the metal interconnection pattern in the contact hole, at least a part of constituting elements of the semiconductor integrated circuit other than the metal thin-film resistance is disposed in a region underneath the metal thin-film resistance.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: April 15, 2008
    Assignee: Ricoh Company, Ltd.
    Inventor: Tohru Ueno
  • Patent number: 7342294
    Abstract: A bipolar transistor includes a collector located over a substrate; and a heat conductive path connecting the substrate to the collector. The heat conductive path is filled with a heat conductive material such as metal or polysilicon. In one embodiment the heat conductive path runs through the collector to extract heat from the collector and drain it to the substrate. In alternate embodiments, the transistor can be a vertical or a lateral device. According to another embodiment, an integrated circuit using BiCMOS technology comprises pnp and npn bipolar transistors with heat conduction from collector to substrate and possibly p-channel and n-channel MOSFETS. According to yet another embodiment, a method for making a transistor in an integrated network comprises steps of etching the heat conducting path through the collector and to the substrate and fill with heat conductive material to provide a heat drain for the transistor comprising the collector.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: March 11, 2008
    Assignee: International Business Machines Corporation
    Inventors: Qiqing Ouyang, Kai Xiu
  • Patent number: 7339254
    Abstract: According to an exemplary embodiment, a structure includes a silicon-on-insulator substrate including a buried oxide layer situated over a bulk silicon substrate and a silicon layer situated over the buried oxide layer. The structure further includes a trench formed in the silicon layer and the buried oxide layer, where the trench has a bottom surface and a first and a second sidewall, and where the trench is situated adjacent to an optical region of the silicon-on-insulator substrate. According to this exemplary embodiment, the structure further includes an epitaxial layer situated in the trench and situated on the bulk silicon substrate, where the epitaxial layer and the bulk silicon substrate form a bulk silicon electronic region of the silicon-on-insulator substrate. The structure further includes a base of a bipolar transistor situated on the epitaxial layer, where the base can be silicon-germanium.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: March 4, 2008
    Assignee: Newport Fab, LLC
    Inventor: Paul H. Kempf
  • Patent number: 7335927
    Abstract: A structure and method of fabricating lateral diodes. The diodes include Schottky diodes and PIN diodes. The method of fabrication includes forming one or more doped regions and more trenches in a silicon substrate and forming metal silicides on the sidewalls of the trenches. The fabrication of lateral diodes may be integrated with the fabrication of field effect, bipolar and SiGe bipolar transistors.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: February 26, 2008
    Assignee: Internatioanl Business Machines Corporation
    Inventors: Douglas Duane Coolbaugh, Jeffrey Bowman Johnson, Xuefeng Liu, Bradley Alan Orner, Robert Mark Rassel, David Charles Sheridan
  • Patent number: 7319254
    Abstract: A semiconductor device having resistors in a peripheral area and fabrication method thereof are provided. A mold layer is formed on a semiconductor substrate. The mold layer is patterned to form first molding holes and a second molding hole in the mold layer. A storage node layer is formed on the mold layer as well as in the first and second molding holes. The storage node layer is patterned to form storage nodes in the first molding holes and a portion of a resistor in the second hole.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: January 15, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Hwa Kwak, Byung-Seo Kim
  • Patent number: 7309907
    Abstract: The semiconductor device (11) of the invention comprises a circuit that is covered by a passivation structure. It is provided with a first security element (12) that comprises a local area of the passivation structure and which has a first impedance. Preferably, a plurality of security elements (12) is present, whose the impedances differ. The semiconductor device (11) further comprises measuring means (4) for measuring an actual value of the first impedance, and a memory (7) comprising a first memory element (7A) for storing the actual value as a first reference value in the first memory element (7A). The semiconductor device (11) of the invention can be initialized by a method wherein the actual value is stored as the first reference value. Its authenticity can be checked by comparison of the actual value again measured and the first reference value.
    Type: Grant
    Filed: November 28, 2002
    Date of Patent: December 18, 2007
    Assignee: NXP B.V.
    Inventors: Petra Elisabeth De Jongh, Edwin Roks, Robertus Adrianus Maria Wolters, Hermanus Leonardus Peek
  • Patent number: 7307313
    Abstract: A semiconductor device includes (a) a vertical field effect transistor, the vertical field effect transistor including a drain electrode formed on a first surface of a first conductivity type of a semiconductor, a pair of first trenches formed from a second surface of the semiconductor, control regions of a second conductivity type formed respectively along the first trenches, a source region of the first conductivity type formed along the second surface of the semiconductor between the first trenches, a source electrode joined to the source region, and a gate electrode adjacent to the control regions, (b) a pair of second trenches formed from the second surface of the semiconductor independently of the field effect transistor, (c) control regions of the second conductivity type formed along the second trenches, and (d) a diode having a junction formed on the second surface between the second trenches.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: December 11, 2007
    Assignees: Hitachi, Ltd., Denso Corporation
    Inventors: Takasumi Ohyanagi, Atsuo Watanabe, Toshio Sakakibara, Tsuyoshi Yamamoto, Hiroki Nakamura, Rajesh Kumar Malhan
  • Patent number: 7276778
    Abstract: A semiconductor system includes a self arc-extinguishing device, and an IGBT that works as a thyristor when a current between a first terminal and a second terminal connected to a second well electrode is small, and as a bipolar transistor when that current is large, and automatically switches between them according to the magnitude of the current. The IGBT is formed with a first conductivity-type semiconductor substrate. On a surface layer of the substrate is a second conductivity-type well region to which a first well electrode is connected. A first conductivity-type emitter region, to which an emitter electrode is connected, is disposed on a surface layer in the well region. A control electrode is disposed through an insulating film partially covering the well and emitter regions. A second conductivity-type well layer, to which the second well electrode is connected, is disposed on a back surface side of the substrate.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: October 2, 2007
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventor: Koh Yoshikawa
  • Patent number: 7208814
    Abstract: A resistive device includes a resistive region of a semiconductor material that includes a first region and a second region, wherein the first region has a higher dopant concentration than the second region, and wherein a resistance-determining width of a current path through the first region is determined by a portion of a doping boundary between the first region and the second region.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: April 24, 2007
    Assignee: Infineon Technologies AG
    Inventor: Stefan Pompl
  • Patent number: 7186611
    Abstract: A high-density Germanium (Ge)-on-Insulator (GOI) photodiode array and corresponding fabrication method are provided. The method includes: forming an array of pixel driver nMOST devices, each device having a gate connected to a row line in a first orientation, a first source/drain (S/D) region, and a second S/D region connected to Vdd; forming a P-I-N Ge diode for each pixel as follows: forming a n+ region; forming an intrinsic Ge region overlying the n+ region; forming a p+ junction in the intrinsic Ge; and, isolating the P-I-N Ge diodes; and, forming an Indium Tin oxide (ITO) column in a second orientation, about orthogonal to the first orientation, overlying the P-I-N Ge diodes.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: March 6, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Jong-Jan Lee, Jer-Shen Maa, Douglas J. Tweet
  • Patent number: 7148557
    Abstract: A bipolar transistor includes: a first semiconductor layer having an intrinsic base region and an extrinsic base region; and a second semiconductor layer having a portion located on the intrinsic base region to be an emitter region or a collector region. A capacitive film is provided on the extrinsic base region using the same semiconductor material as that for the second semiconductor layer. A base electrode is formed on the first semiconductor layer to cover the capacitive film and the extrinsic base region.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: December 12, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Manabu Yanagihara, Naohiro Tsurumi, Tsuyoshi Tanaka, Daisuke Ueda
  • Patent number: 7141865
    Abstract: A Low Noise semiconductor amplifier structure formed from layers of differently doped semiconductor material. This structure when properly biased will amplify voltage signals applied to the input terminal (Base1 or signal-base), and provide the same signal, amplified at the terminal designated as the output or collector. The semiconductor material can be any of a number of semiconductor materials, Germanium, Silicon, Gallium-Arsenide or any material with suitable semi-conducting properties. The structure can be any BJT (Bipolar Junction Transistor) form. The presence of an additional, distinct highly doped layer indicated as Base2 in the BJT form, provides an electrical noise suppression function. This inhibits intrinsic electrical noise, and improves the high frequency performance of the device in conjunction with an external capacitor connected to this new Base2 (or anti-base) region.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: November 28, 2006
    Inventor: James Rodger Leitch
  • Patent number: 7132729
    Abstract: The present invention provides a semiconductor device formed with a diode array together with bipolar transistors, which is capable of preventing the occurrence of crystal defects developed in cross patterns in deep trench regions and improving device yields, and a method of manufacturing the semiconductor device. A semiconductor device includes a LOCOS oxide film which isolates a plurality of diodes in an X direction, and deep trenches which isolate the plurality of diodes in a Y direction. The depth of each of the deep trenches is deeper than a high density layer embedded below a collector layer of each bipolar transistor. A shallow trench may be used as an alternative to the LOCOS oxide film.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: November 7, 2006
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hirokazu Fujimaki
  • Patent number: 7126171
    Abstract: A bipolar transistor of the present invention comprises a collector layer made of an n-type semiconductor and an emitter layer made of an n-type semiconductor provided on this collector layer. A gate layer for injecting p-type carriers (holes) into the emitter layer is provided on the emitter layer. A p-type carrier retaining layer is formed between the collector layer and the emitter layer. The p-type carrier retaining layer temporarily retains the p-type carriers that are injected from the gate layer into the emitter layer and diffused in the emitter layer and reach the p-type carrier retaining layer. The bipolar transistor has a structure whose performance is not influenced by sheet resistance of the base layer, and is able to exhibit a high current gain even in a high-frequency region.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: October 24, 2006
    Assignee: Sharp Kabushiki Kaisha
    Inventor: John Kevin Twynam
  • Patent number: 7112537
    Abstract: A method of fabricating an interconnection structure of a semiconductor device includes the steps of successively depositing an etch-stop layer and an intermetal insulating layer on a semiconductor substrate, forming a sacrificial insulating layer on the intermetal insulating layer, forming a photoresist pattern on the sacrificial insulating layer to define a trench formation region, etching the intermetal insulating layer using a mask of the photoresist pattern to form a trench, and etching the entire etch-stop layer.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: September 26, 2006
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Dong-Yeal Keum
  • Patent number: 7084485
    Abstract: A method of manufacturing a semiconductor component includes: providing a semiconductor substrate (210, 510); forming a trench (130, 430) in the semiconductor substrate to define a plurality of active areas separated from each other by the trench; forming a buried layer (240, 750) in the semiconductor substrate underneath a portion of the trench, where the buried layer is at least partially contiguous with the trench; after forming the buried layer, depositing an electrically insulating material (133, 810) in the trench; forming a collector region (150, 950) in one of the plurality of active areas, where the collector region forms a contact to the buried layer; forming a base structure over the one of the plurality of active areas; and forming an emitter region over the one of the plurality of active areas.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: August 1, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventor: James A. Kirchgessner
  • Patent number: 7038249
    Abstract: A bipolar transistor structure for use in integrated circuits where the active device is processed on the sidewall of an n-hill so that the surface footprint does not depend on the desired area of active device region (emitter area). This structure, which is referred to as a Horizontal Current Bipolar Transistor (HCBT), consumes a smaller area of chip surface than conventional devices, thereby enabling higher packing density of devices and/or the reduction of integrated circuit die size. The device is fabricated with a single polysilicon layer, without an epitaxial process, without demanding trench isolation technology, and with reduced thermal budget. Fabrication requires fewer etching processes and thermal oxidations than in conventional devices.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: May 2, 2006
    Assignee: The Regents of the University of California
    Inventors: Tomislav Suligoj, Petar Biljanovic, Kang L. Wang
  • Patent number: 7026705
    Abstract: A semiconductor device has a surge protection circuit electrically connected to a signal input terminal and including a diode and a transistor. The diode has its cathode region constituted of an n+ diffusion layer, an n? epitaxial layer, an n-type diffusion layer and an n+ diffusion layer. The n+ diffusion layer is electrically connected to a conductive layer and formed at a main surface of a semiconductor substrate. The n+ diffusion layer constitutes, together with a p-type diffusion layer, a pn junction where Zener breakdown occurs, and the pn junction with the Zener breakdown occurring therein is distant from a field oxide film. Then, the semiconductor device with the surge protection circuit without suffering from current leakage and thus normally operating can be achieved.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: April 11, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Fumitoshi Yamamoto, Akio Uenishi
  • Patent number: 7009269
    Abstract: In the semiconductor device including a control input terminal, a GND terminal and an output terminal, and also having an IGBT and a control circuit driving the IGBT, a ground resistance and a temperature compensation resistance are connected in series to each other between the control input terminal and the GND terminal. A polysilicon resistance provided on an insulating film formed in a semiconductor substrate in which the IGBT is provided is employed as the ground resistance. A diffusion resistance obtained by injecting an impurity into said semiconductor substrate and performing a diffusion operation is employed as the temperature compensation resistance.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: March 7, 2006
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Yukio Yasuda
  • Patent number: 7005665
    Abstract: The present invention includes a method for forming a phase change material memory device and the phase change memory device produced therefrom. Specifically, the phase change memory device includes a semiconductor structure including a substrate having a first doped region flanked by a set of second doped regions; a phase change material positioned on the first doped region; and a conductor positioned on the phase change material, wherein when the phase change material is a first phase the semiconductor structure operates as a bipolar junction transistor, and when the phase change material is a second phase the semiconductor structure operates as a field effect transistor.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: February 28, 2006
    Assignee: International Business Machines Corporation
    Inventors: Stephen S. Furkay, Hendrick Hamann, Jeffrey B. Johnson, Chung H. Lam, Hon-Sum P. Wong
  • Patent number: 7002221
    Abstract: A bipolar transistor with raised extrinsic base and selectable self-alignment between the extrinsic base and the emitter is disclosed. The fabrication method may include the formation of a predefined thickness of a first extrinsic base layer of polysilicon or silicon on an intrinsic base. A dielectric landing pad is then formed by lithography on the first extrinsic base layer. Next, a second extrinsic base layer of polysilicon or silicon is formed on top of the dielectric landing pad to finalize the raised extrinsic base total thickness. An emitter opening is formed using lithography and RIE, where the second extrinsic base layer is etched stopping on the dielectric landing pad. The degree of self-alignment between the emitter and the raised extrinsic base is achieved by selecting the first extrinsic base layer thickness, the dielectric landing pad width, and the spacer width.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: February 21, 2006
    Assignee: International Business Machines Corporation
    Inventors: Marwan H. Khater, James S. Dunn, David L. Harame, Alvin J. Joseph, Qizhi Liu, Francois Pagette, Stephen A. St. Onge, Andreas D. Stricker
  • Patent number: 6989580
    Abstract: A process for manufacturing an array of cells, including: implanting, in a body of semiconductor material of a first conductivity type, a common conduction region of the first conductivity type; forming, in the body, above the common conduction region, a plurality of active area regions of a second conductivity type and a first doping level; forming, on top of the body, an insulating layer having first and second openings; implanting first portions of the active area regions through the first openings with a doping agent of the first conductivity type, thereby forming, in the active area regions, second conduction regions of the first conductivity type; implanting second portions of the active area regions through the second openings with a doping agent of the second conductivity type, thereby forming control contact regions of the second conductivity type and a second doping level, higher than the first doping level; forming, on top of the body, a plurality of storage components, each storage component havin
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: January 24, 2006
    Assignees: STMicroelectronics S.r.l., Ovonyx, Inc.
    Inventors: Fabio Pellizzer, Giulio Casagrande, Roberto Gastaldi, Loris Vendrame, Augusto Benvenuti, Tyler Lowrey
  • Patent number: 6989579
    Abstract: The present invention provides a method for adhering dielectric layers to metals, in particular inert metals, using an adhesive layer comprising silicon-rich silicon nitride. Good adhesion is achieved at temperatures of less than 300° C., thereby facilitating the fabrication of semiconductor structures containing II–VI and III–V semiconductors.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: January 24, 2006
    Assignee: Lucent Technologies Inc.
    Inventors: Yang Yang, Chun-Ting Liu, Rose Kopf, Chen-Jung Chen, Laylay Chua
  • Patent number: 6965150
    Abstract: A plurality of transistor cells (T) are arranged in the semiconductor layer (4). Ring-shaped p-type layers (1b) and n-type layers (1a) composed of polysilicon film are formed alternately on an insulating layer (6) in an outer side than the plurality of transistor cells (T) (the peripheral portion of chip), thereby forming a protective diode (1). The most outer layer of the protective diode (1) is contacted to the gate wiring (2) composed of metal film such as Al, which is formed circularly on the most external layer, and the most inner layer is contacted to the source wiring composed of metal layer, thereby the protective diode is connected between the gate and source of a transistor. As a result of this, the semiconductor device with the protective diode which has the small series resistance, can be formed without enlarging chip area and by using unoccupied space of chip, and realize protection function sufficiently, can be obtained.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: November 15, 2005
    Assignee: Rohm Co., Ltd.
    Inventors: Syouji Higashida, Masaru Takaishi
  • Patent number: 6933588
    Abstract: In a NPN transistor electrostatic discharge (ESD) protection structure, certain parameters, including maximum lattice temperature, are improved by introducing certain process changes to provide for SCR-like characteristics during ESD events. A p+region is formed adjacent the collector to define a SCR-like emitter and with a common contact with the collector of the BJT. The p+ region is spaced from the n-emitter of the transistor by a n-epitaxial region, and the collector is preferably spaced further from the n-emitter than is the case in a regular BJT.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: August 23, 2005
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Ann Concannon, Peter J. Hopper, Marcel ter Beek
  • Patent number: 6921962
    Abstract: A thin film resistor (60) is contained between two metal interconnect layers (40, 100) of an integrated circuit. Contact may be made to the resistor (60) through vias (95) from the metal layer (100) above the resistor (60) to both the thin film resistor (60) and the underlying metal layer (40) simultaneously. The resistor (60) may include portions of a hard mask (70) under the vias (95) to protect the resistor material (60) during the via (95) etch. This design provides increased flexibility in fabricating the resistor (60) since processes, materials, and chemicals do not have to satisfy the conditions of both the resistor (60) and the rest of the integrated circuit (especially the interconnect layer 40) simultaneously.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: July 26, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Fred D. Bailey, Stuart M. Jacobsen
  • Patent number: 6919615
    Abstract: A semiconductor device for an integrated injection logic cell having a pnp bipolar transistor structure formed on a semiconductor substrate, wherein at least one layer of insulating films formed on a base region of the pnp bipolar transistor structure is comprised of a silicon nitride film. The semiconductor device of the present invention is advantageous in that the silicon nitride film constituting at least one layer of the insulating films formed on the base region of the pnp bipolar transistor prevents an occurrence of contamination on the surface of the base region, so that both the properties of the pnp bipolar transistor and the operation of the IIL cell can be stabilized. Further, by the process of the present invention, the above-mentioned excellent semiconductor device can be produced.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: July 19, 2005
    Assignee: Sony Corporation
    Inventor: Hirokazu Ejiri
  • Patent number: 6906399
    Abstract: An integrated circuit (10) includes a thermal sensing device (20) and a power-switching device (12) such as an IGBT. The power device (12) is fabricated in a conventional manner on a semiconductor substrate, and the thermal sensing device (20) is fabricated on an electrical insulation layer (74) formed over the substrate. The thermal sensing device (20) may be provided in the form of a number of series-connected polysilicon diodes (D1-D3) positioned adjacent to the power device (12) such that the operating temperature of the thermal sensing device (20) is near that of the power device (12). In response to an input current IC, the thermal sensing device (20) produces an output voltage (VD) that is substantially linear with surface die temperature, and which reacts rapidly to changes in surface die temperature. The thermal sensing device (20) is completely electrically isolated from the power device, thereby eliminating any electrical interaction therebetween.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: June 14, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: John R. Fruth, Scott B. Kesler
  • Patent number: 6897546
    Abstract: A semiconductor device which can suppress an electronic breakdown. In the semiconductor device, a base electrode is connected to a base region in a base contact region defined on a surface of the base region. An N-type region having the same conductivity type as an emitter region is provided beneath a boundary portion of the base contact region to surround the base contact region. In other words, a PN-type diode constituted by the P-type base region and the N-type region is provided beneath the boundary portion of the base contact region.
    Type: Grant
    Filed: September 6, 2000
    Date of Patent: May 24, 2005
    Assignee: Rohm Co., Ltd.
    Inventor: Kazuhisa Sakamoto
  • Patent number: 6894367
    Abstract: A vertical bipolar transistor has a J-FET incorporated in an epitaxial layer. The pinch-off voltage of the J-FET is less than the collector-emitter breakdown voltage of a bipolar transistor without the J-FET.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: May 17, 2005
    Assignee: Infineon Technologies AG
    Inventors: Peter Nelle, Matthias Stecher
  • Patent number: 6885082
    Abstract: The present invention provides a semiconductor device having a bipolar transistor constructed so as to allow the adjustment of the base input signal voltage that switches on a transistor in which a diffusion region of a different conductivity type from that of the base region is formed at the contact of the base electrode, and to allow the base current to be controlled when a digital transistor is produced. A base electrode connection region 24 of an n+-type is provided to a p-type base region 12, and a zener voltage control diffusion region 25 of a p+-type is provided around the periphery of the base electrode connection region 24 so as to form a pn junction and undergo zener breakdown at the desired voltage. A resistor 26 composed of polysilicon is connected to the base electrode connection region 24 via a metal electrode 16a. As a result, this semiconductor device has a bipolar transistor in which a zener diode ZD and the resistor 26 are serially built into the base.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: April 26, 2005
    Assignee: Rohm Co., Ltd.
    Inventor: Kazuhisa Sakamoto
  • Patent number: 6870227
    Abstract: A ESD protective device is proposed, including a vertical bipolar transistor connected as a diode, in which the contacting of the collector layer is designed highly resistive. The arrangement, while having a space-saving construction, has an increased snap-back voltage.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: March 22, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Stephan Mettler, Steffi Lindenkreuz, Wolfang Wilkening
  • Patent number: 6867478
    Abstract: A semiconductor device manufacturing method is used for packaging a thin semiconductor chip in an economical manner. A semiconductor chip having one electrode terminal, a first member having a first conductor on its surface, and a second member having a second conductor on its surface are prepared. The first and second members are positioned such that the first and second conductors face each other, and the semiconductor chip is held between the members. In this arrangement, one of the first and second conductors is in electrical contact with the first electrode.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: March 15, 2005
    Assignee: Hitachi, Ltd.
    Inventor: Mitsuo Usami
  • Publication number: 20040262696
    Abstract: An emitter switching configuration having at least one bipolar transistor and a MOS transistor having a common conduction terminal and a Zener diode inserted between a control terminal of the bipolar transistor and the common conduction terminal. A monolithic structure is also provided that is effective in implementing the emitter switching configuration.
    Type: Application
    Filed: January 30, 2004
    Publication date: December 30, 2004
    Applicant: STMicroelectronics S.r.I.
    Inventor: Cesare Ronsisvalle
  • Patent number: 6833606
    Abstract: In the present invention, a semiconductor device is formed which includes an MIM capacitor located on the upper surface of a heterostructure from which the emitter, base and collector sections of a nearby HBT are defined. In this way the capacitor and HBT share a substantially common structure, with the base and emitter electrodes of the HBT fashioned from the same metal layers as the upper and lower capacitor plates, respectively. Furthermore, as the insulator region of the capacitor is formed prior to definition of the HBT structure, the dielectric material used can be deposited by means of a plasma enhanced process, without damaging the HBT structure.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: December 21, 2004
    Assignee: Denselight Semiconductor PTE LTD
    Inventors: Hiroshi Nakamura, Ting Cheong Ang, Kian Siong Ang, Subrata Halder, Geok Ing Ng
  • Patent number: 6828644
    Abstract: A first layer is formed on an underlying substrate having a surface layer made of semiconductor of a first conductivity type. The first layer is made of semiconductor having a resistance higher than that of the surface layer. A first impurity diffusion region of a second conductivity type is formed in a partial surface region of the first layer. The first impurity diffusion region does not reach the surface of the underlying substrate. A second impurity diffusion region of the first conductivity type is disposed in the first layer and spaced apart from the first impurity diffusion region. The second impurity diffusion region reaches the surface of the underlying substrate. A separation region is disposed between the first and second impurity diffusion regions. The separation region comprises a trench formed in the first layer and dielectric material disposed at least in a partial internal region of the trench.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: December 7, 2004
    Assignees: Fujitsu Limited, Sharp Kabushiki Kaisha
    Inventors: Yuji Asano, Morio Katou, Takao Setoyama, Toshihiko Fukushima, Kazuhiro Natsuaki
  • Patent number: 6812486
    Abstract: A conductive structure provides a conductive path from a first region in a semiconductor material to a second spaced apart region in the semiconductor material by forming a plurality of trenches between the first and second regions, implanting a dopant into the bottom surfaces of the trenches, and then annealing the wafer to cause the dopant at the bottom surfaces to diffuse and form a continuous conductive path.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: November 2, 2004
    Assignee: National Semiconductor Corporation
    Inventors: Charles A. Dark, William M. Coppock
  • Patent number: 6812546
    Abstract: When a current mirror circuit is composed of transistors that inevitably form a parasitic photodiode between an epitaxial layer and a substrate layer because of structure of an integrated circuit, a photocurrent increases in proportional to an area of the epitaxial layer. Thus, the area of the epitaxial layer is adjusted in accordance with a current ratio of the current mirror, so as to allow the photocurrent to affect equally on both input and output sides of the current mirror circuit, i.e., so as to cancel the photocurrent. With this, in a current mirror circuit provided in an integrated circuit, it is possible to eliminate the influence of the photocurrent, without considerably increasing an element area or taking special measures to shield light.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: November 2, 2004
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takahiro Inoue, Naruichi Yokogawa
  • Publication number: 20040207047
    Abstract: A semiconductor component includes a semiconductor substrate (210) having a first conductivity type, a semiconductor epitaxial layer (220) having the first conductivity type located over the semiconductor substrate, a first semiconductor device (110) and a second semiconductor device (130) located in the semiconductor epitaxial layer and including, respectively, a first semiconductor region (120) and a second semiconductor region (140), both having the second conductivity type, an ohmic contact region (150) in the semiconductor epitaxial layer having the first conductivity type and located between the first and second semiconductor devices, and at least one electrically insulating trench (160, 360) located in the semiconductor epitaxial layer and circumscribing at least the first semiconductor device. The semiconductor epitaxial layer has a doping concentration lower than a doping concentration of the semiconductor substrate.
    Type: Application
    Filed: April 15, 2003
    Publication date: October 21, 2004
    Applicant: Motorola, Inc.
    Inventors: Vishnu Khemka, Vijay Parthasarathy, Ronghua Zhu, Amitava Bose, Todd C. Roggenbauer
  • Publication number: 20040207046
    Abstract: High-voltage bipolar transistors (30, 60) in silicon-on-insulator (SOI) integrated circuits are disclosed. In one disclosed embodiment, an collector region (28) is formed in epitaxial silicon (24, 25) disposed over a buried insulator layer (22). A base region (32) and emitter (36) are disposed over the collector region (28). Buried collector region (31) are disposed in the epitaxial silicon (24) away from the base region (32). The transistor may be arranged in a rectangular fashion, as conventional, or alternatively by forming an annular buried collector region (31). According to another disclosed embodiment, a high voltage transistor (60) includes a central isolation structure (62), so that the base region (65) and emitter region (66) are ring-shaped to provide improved performance. A process for fabricating the high voltage transistor (30, 60) simultaneously with a high performance transistor (40) is also disclosed.
    Type: Application
    Filed: May 12, 2004
    Publication date: October 21, 2004
    Inventors: Jeffrey A. Babcock, Gregory E. Howard, Angelo Pinto, Phillipp Steinmann, Scott G. Balster
  • Publication number: 20040198013
    Abstract: A method in the fabrication of an integrated circuit including a PMOS varactor and an npn transistor, comprises the steps of (i) simultaneously forming buried n+-doped regions (31) for the PMOS varactor and the npn transistor in a p-doped substrate (10, 41); (ii) simultaneously forming n-doped wells (41) above the buried n+-doped regions (31); (iii) simultaneously forming field isolation areas (81) around the n-doped regions (41); (iv) forming a PMOS gate region (111, 194) and a p-doped base each in a respective one of the n-doped wells (41); and (v) simultaneously forming n+-doped contacts to the buried n+-doped regions (31); the contacts being separated from the n-doped wells (41). Source and drain regions may be formed in the PMOS n-well (inversion mode) or the PMOS n+-doped contact may be formed in the PMOS n-well instead of being separated from there (accumulation mode).
    Type: Application
    Filed: April 22, 2004
    Publication date: October 7, 2004
    Inventor: Ted Johansson
  • Publication number: 20040183159
    Abstract: A plurality of the same kind of npn-type bipolar transistors are disposed regularly on a semiconductor layer that is provided over an insulation layer. The plurality of unit bipolar transistors are connected in parallel, thereby to form a plurality of desired bipolar transistors. A deep trench isolation surrounds a group of or the whole of the plurality of unit bipolar transistors that are connected in parallel, for a plurality of desired bipolar transistor that require thermal stability.
    Type: Application
    Filed: February 9, 2004
    Publication date: September 23, 2004
    Applicant: Hitachi, Ltd.
    Inventors: Yoichi Tamaki, Hideaki Nonami, Masato Hamamoto
  • Patent number: 6791160
    Abstract: Disclosed is a semiconductor device in which the capacitive element of MIMC structure has a low parasitic capacity. A process for fabrication of said semiconductor device. The semiconductor device has a capacitive element of MIMC structure, a PN photodiode, and a vertical NPN bipolar transistor which are mounted together on the same semiconductor substrate. The lower wiring layer connected to the TiN lower electrode layer of the capacitive element of MIMC structure is formed on the insulating film and the first interlayer insulating film. Between this insulating film and the p-type semiconductor substrate is the p−-type low-concentration semiconductor layer whose impurity concentration is lower than that of the p-type semiconductor substrate. This construction suppresses the parasitic capacity of the capacitive element of the MIMC structure.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: September 14, 2004
    Assignee: Sony Corporation
    Inventors: Hirokazu Ejiri, Shigeru Kanematsu
  • Patent number: 6787881
    Abstract: An integrated power device having a power transistor made up of a first diode and a second diode that are connected together in series between a collector region and emitter-contact region of the power transistor to define a common intermediate node, a control circuit including a high-voltage region bonded on the emitter-contact region (14) by means of an adhesive layer, and biasing circuit connected between the common intermediate node and the high-voltage region. The biasing circuit including a contact pad electrically connected to the common intermediate node, an electrical connection region that is in electrical contact with the high-voltage region (30), and a wire having a first end soldered on the contact pad and a second end soldered on said electrical connection region.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: September 7, 2004
    Assignee: STMicroelectronics S.r.l.
    Inventors: Romeo Letor, Antonino Torres, Leonardo Fragapane
  • Patent number: 6777723
    Abstract: A protection circuit prevents a circuit component from static charge unavoidably applied to a signal terminal, and includes a vertical bipolar transistor having an n-type deep well serving as an emitter region, a p-type well formed on the n-type deep well and serving as a base region and an n-type impurity region formed in the p-type well and serving as a collector region so as to reduce a base resistance regardless of a shallow trench isolation.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: August 17, 2004
    Assignee: NEC Corporation
    Inventor: Kaoru Narita
  • Patent number: 6759694
    Abstract: A phototransistor structure is disclosed. A sidewall is grown on the collector side and under the base. The surface of the sidewall is formed with a sidewall contact. When the contact is connected to an external voltage, the holes accumulated at the junction of the base and emitter can be quickly removed. This solves the problem in the prior art that using a bias between the base and the emitter to remove holes usually results in a large dark current (bias current), power consumption, and diminishing optoelectronic conversion gain.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: July 6, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Min Hsu, Jin-Wei Shi, Zing-Way Pei, Fon Yuan, Chee-Wee Liu
  • Patent number: 6756280
    Abstract: In a semiconductor device having a junction type diode using a bipolar transistor and a process for producing the same, a ratio of a diode electric current to a leakage electric current is improved, and latch up resistance is improved without increasing the process. A p type semiconductor substrate, a collector buried region and an n type epitaxial layer are formed, a p type first impurity region is formed in the n type epitaxial layer, an n type second impurity region is formed in the first impurity region, an N+ sinker is formed, and a collector electrode is formed, with a common electrode being formed on the first and second impurity regions.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: June 29, 2004
    Assignee: Sony Coporation
    Inventors: Tomotaka Fujisawa, Chihiro Arai
  • Patent number: 6730557
    Abstract: A semiconductor device having a bipolar transistor which is capable of high integration, and a semiconductor device in which the bipolar transistor has good characteristic properties. A process for producing said semiconductor device.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: May 4, 2004
    Assignee: Sony Corporation
    Inventor: Chihiro Arai