Including Additional Component In Same, Non-isolated Structure (e.g., Transistor With Diode, Transistor With Resistor, Etc.) Patents (Class 257/577)
  • Patent number: 6268639
    Abstract: An ESD protection circuit includes a bipolar transistor, a resistor, and a zener diode formed on and within a semiconductor substrate. The resistor extends between the base and emitter regions of the transistor so that voltage developed across the resistor can turn on the transistor. The zener diode is formed in series with the resistor and extends between the base and collector regions of the transistor. Thus configured, breakdown current through the zener diode, typically in response to an ESD event, turns on the transistor to provide a nondestructive discharge path for the ESD. The zener diode includes anode and cathode diffusions. The cathode diffusion extends down into the semiconductor substrate in a direction perpendicular to the substrate. The anode diffusion extends down through the cathode diffusion into the semiconductor substrate. The anode diffusion extends down further than the cathode diffusion so that the zener diode is arranged vertically with respect to the substrate.
    Type: Grant
    Filed: February 11, 1999
    Date of Patent: July 31, 2001
    Assignee: Xilinx, Inc.
    Inventors: Sheau-Suey Li, Shahin Toutounchi, Michael J. Hart, Xin X. Wu, Daniel Gitlin
  • Patent number: 6251778
    Abstract: A method for using CMP processes in the salicide process for preventing bridging.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: June 26, 2001
    Assignee: United Microelectronics Corporation
    Inventors: Edberg Fang, T. C. Tsai, L. M. Liu
  • Patent number: 6252282
    Abstract: The invention relates to a semiconductor device including a preferably discrete bipolar transistor with a collector region, a base region, and an emitter region which are provided with connection conductors. A known means of preventing a saturation of the transistor is that the latter is provided with a Schottky clamping diode. The latter is formed in that case in that the connection conductor of the base region is also put into contact with the collector region. In a device according to the invention, the second connection conductor is exclusively connected to the base region, and a partial region of that portion of the base region which lies outside the emitter region, as seen in projection, lying below the second connection conductor is given a smaller flux of dopant atoms. The bipolar transistor in a device according to the invention is provided with a pn clamping diode which is formed between the partial region and the collector region.
    Type: Grant
    Filed: February 9, 1999
    Date of Patent: June 26, 2001
    Assignee: U.S. Philips Corporation
    Inventors: Godefridus A. M. Hurkx, Holger Schligtenhorst, Bernd Sievers
  • Patent number: 6246092
    Abstract: A MOS type semiconductor apparatus is provided that includes a first MOS type semiconductor device through which main current flows, and a second MOS type semiconductor device through which current that is smaller than the main current flows. The first and second MOS type semiconductor devices provided on the same semiconductor substrate have substantially the same structure, and have a common drain electrode. A gate electrode of the second MOS type semiconductor device is connected to the common drain electrode. The semiconductor apparatus further includes a plurality of pairs of Zener diodes which are connected in series and provided between the source electrode of the second MOS type semiconductor device and the gate electrode of the first MOS type semiconductor device. Each pair of Zener diodes are reversely connected to each other.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: June 12, 2001
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Tatsuhiko Fujihira, Takeyoshi Nishimura, Takashi Kobayashi
  • Publication number: 20010000630
    Abstract: Memory devices, such as random access memory, are affixed to an electrical contact frame and coupled to signals lines on the contact frame which is, in turn, mounted on a top surface of an integrated circuit. The signal leads are coupled to electrical contact pads disposed on the top surface of the integrated circuit. The contact pads and signal leads transfer control and power signals between the integrated circuit and the memory devices.
    Type: Application
    Filed: December 12, 2000
    Publication date: May 3, 2001
    Applicant: Micron Technology, Inc.
    Inventor: George B. Raad
  • Patent number: 6225679
    Abstract: A structure for the protection of a high-voltage pad includes a lateral bipolar transistor, an N-type diffusion of which, connected to the pad to be protected, is made in an N-type tub with a zone that extends laterally outside the tub in the base. A P-type implantation is made on the entire substrate outside the N-type tub except in the region in which the zone extends.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: May 1, 2001
    Assignee: SGS-Thomson Microelectronics S.A.
    Inventors: Richard Fournel, Fabrice Marinet
  • Patent number: 6130471
    Abstract: A ballasted transistor structure reduces thermal runaway. A heterojunction bipolar junction transistor array includes a plurality of transistors, each having an emitter, a base and a collector. Each of the bases is an alloy of silicon and germanium and each of the collectors and emitters is silicon. A ballast resistor, of doped silicon, that prevents thermal runaway, is electrically connected to each of the collectors.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: October 10, 2000
    Assignee: The Whitaker Corporation
    Inventor: Timothy Edward Boles
  • Patent number: 6064109
    Abstract: A semiconductor device includes an emitter region, a contact region, and a resistive medium. The resistive medium is connected between the contact region and the emitter region. The contact region and the emitter region each include an edge facing each other. At least a portion of the emitter region edge and at least a portion of the contact region edge are non-parallel relative to each other. This configuration enables an emitter ballast resistance to be provided with varied emitter current flow along the injecting edge of the emitter. Furthermore, by including an additional contact and an additional resistive medium between the contacts, the ballast resistance of the semiconductor device can be increased without decreasing the figure of merit of the device.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 16, 2000
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Richard A. Blanchard, William P. Imhauser
  • Patent number: 6060763
    Abstract: A semiconductor device has formed onto the surface of a collector region 12 of a semiconductor substrate 11 of one conductivity type with a base region 13 of a different conductivity type, an emitter region 16 of the one conductivity type formed on a surface within the base region 13, and a base electrode 18 and emitter electrode 17 which are formed by opening windows in the base and emitter regions 13, 16.
    Type: Grant
    Filed: November 14, 1997
    Date of Patent: May 9, 2000
    Assignee: NEC Corporation
    Inventors: Kazuo Yamagishi, Akihiro Shimomura, Hirohiko Uno
  • Patent number: 6023089
    Abstract: A semiconductor device, and corresponding method of fabrication, includes a device isolation region formed in a semiconductor layer of a SOI substrate, the semiconductor layer having a first type of conductivity, a first impurity region made of portions of the semiconductor layer, and second and third impurity regions formed in the semiconductor layer outside of the first impurity region, the second and third impurity regions having a second type of conductivity. A base electrode is electrically connected to the first impurity region, a bit line electrode is electrically connected to the second impurity region and a capacitor is electrically connected to the third impurity region. The base electrode may be formed by etching a first contact hole through a first interlayer insulating film formed over the semiconductor layer and filling the first contact hole with an electrically conductive material.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: February 8, 2000
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Nam-Soo Kang
  • Patent number: 6013941
    Abstract: A semiconductor device provided with a planar bipolar transistor and a built-in ingredient acting as an element to protect the bipolar transistor from an external surge voltage e.g. an electrostatic surge voltage and the like, is provided with a planar bipolar transistor further provided with a doped region having a conductivity opposite to that of a semiconductor substrate in which the foregoing planar bipolar transistor is produced, the doped region being produced along the top surface of the semiconductor substrate at a location close to the bipolar transistor, and the emitter of the bipolar transistor being connected the doped region and a fixed potential (V.sub.EE) or the ground potential, whereby the operation speed of a circuit including the transistor is not reduced by potential parasitic capacitors which otherwise accompany the built-in ingredients produced to protect the transistor from an external surge voltage e.g. an electrostatic surge voltage and the like.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: January 11, 2000
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Takayuki Shimizu
  • Patent number: 6013942
    Abstract: In order to avoid thermal runaway bipolar transistors, emitters are provided with ballast resistors. Elongate ballast resistors may be used, part of the lengths being connected for obtaining suitable resistance and design variability. The emitters are split up into a plurality of emitter portions, each with a separate emitter ballast resistor. The collector and base are correspondingly split up. The transistor is split up into unit cells, each comprising an emitter, a ballast resistor, a base, and a collector, which are respectively connected via respective common leads. This structure may advantageously be realized in a SOI technique, the galvanic isolation enabling unproblematic mixing of digital and analog and power devices in the same chip.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: January 11, 2000
    Assignee: Telefonakteibolaget LM Ericsson
    Inventors: Anders Soderbarg, Nils Ola Ogren, H.ang.kan Sjodin
  • Patent number: 6011279
    Abstract: A field controlled bipolar switch having a bulk single crystal silicon carbide substrate of a first conductivity type having an upper surface and a lower surface. A first epitaxial layer of a second conductivity type silicon carbide is formed upon the upper surface of the substrate. A second epitaxial layer of the second conductivity type silicon carbide is formed on the first epitaxial layer of silicon carbide. A plurality of regions of a third conductivity type silicon carbide are formed in the second epitaxial layer to form a gate grid in the second epitaxial layer. A third epitaxial layer of the second conductivity type silicon carbide is formed on the second epitaxial layer and a fourth epitaxial layer of the second conductivity type silicon carbide is formed upon the third epitaxial layer. The fourth epitaxial layer has a higher carrier concentration than is present in the first, second and third epitaxial layers.
    Type: Grant
    Filed: April 30, 1997
    Date of Patent: January 4, 2000
    Assignee: Cree Research, Inc.
    Inventors: Ranbir Singh, John W. Palmour
  • Patent number: 5990539
    Abstract: A transistor component is suited for controlling large currents, even given high frequencies. The transistor component includes integrated emitter resistors which are arranged between partial-emitter regions and emitter-metal contacts. The integrated emitter resistors cause a stabilized, uniform current distribution both over the various partial-emitter regions, and within the partial-emitter regions, and bring about an improved current carrying capacity, as well as improved high-frequency properties, particularly in view of the finite magnitude of the extrinsic base resistance.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: November 23, 1999
    Assignee: Robert Bosch GmbH
    Inventors: Gerhard Conzelmann, Heinz Pfizenmaier, Wolfgang Appel, Volker Dudek, Helmut Schneider
  • Patent number: 5982021
    Abstract: A junction diode structure formed within an integrated circuit. The junction diode structure comprises a semiconductor substrate. The junction diode structure also comprises a dielectric layer formed over the semiconductor substrate. In addition, the junction diode structure also comprises a first polysilicon layer formed upon the dielectric layer, where the first polysilicon layer has a first dopant polarity and a first dopant concentration. Finally, the junction diode structure comprises a second polysilicon layer formed at least in part overlapping and at least in part in contact with the first polysilicon layer. The second polysilicon layer has a second dopant polarity and a second dopant concentration, where the second dopant polarity is opposite to the first dopant polarity, and where a first portion of the second polysilicon layer overlapping and in contact with a first portion of the first polysilicon layer forms a junction diode within the junction diode structure.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: November 9, 1999
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventor: Purakh Raj Verma
  • Patent number: 5959334
    Abstract: A bipolar transistor is formed by forming a base region continuing from a source/drain region of an MOS transistor, as a link base region, and forming an emitter region at a bit line contact hole by impurity implantation. Alternatively, the bipolar transistor is formed by forming an intrinsic base region and an emitter region at a bit line contact hole by impurity implantation. The intrinsic base region is made deeper than the source/drain region. Further, the impurity of the intrinsic base region is made different from that of the link base region.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: September 28, 1999
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yukio Maki, Hiroki Honda
  • Patent number: 5949122
    Abstract: A monolithic, integrated semiconductor circuit comprising a high-voltage ice (210) with a predetermined reverse-conduction threshold comprising a chain of zener diodes (220-240). Device 210 is connected in series with a thermal compensation device (250) constituted by a plurality of Vbe multipliers connected in series with one another. Each of the Vbe multipliers is formed by a resistive divider (R1i, R2i) and a low-voltage transistor (Ti) or two or more low-voltage transistors in a Darlington configuration.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: September 7, 1999
    Assignee: Co.Ri.M.Me-Consorzio per la Ricerca Sulla Microelettonica Nel Mezzogiorno
    Inventor: Salvatore Scaccianoce
  • Patent number: 5942783
    Abstract: A semiconductor circuit includes a semiconductor layer having a surface and a monolithic output stage formed in the semiconductor layer. The monolithic output stage extends to the surface of the semiconductor layer and has a periphery within the semiconductor layer, an output terminal, and a supply terminal. A barrier well is formed in the semiconductor layer and adjacent to at least a portion of the periphery of the monolithic output stage. The barrier well extends to the surface of the semiconductor layer and has a first conductivity. A diode having first and second diode regions is disposed in the semiconductor layer. The first diode region is coupled to the supply terminal. The diode is operable to prevent current flow from the barrier well to the supply terminal when the voltage between the supply and output terminals has a first polarity.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: August 24, 1999
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Davide Brambilla, Edoardo Botti, Paolo Ferrari
  • Patent number: 5939768
    Abstract: A vertical structure, integrated bipolar transistor incorporating a current sensing resistor, comprises a collector region, a base region overlying the collector region, and an emitter region over the base region. The emitter region comprises a buried region a surface region, and a first vertical diffusion region connecting the buried layer to the surface region. A second vertical diffusion region connects the buried emitter layer periphery to a first surface contact, while the surface emitter region is contacted, along three peripheral sides thereof, by a second surface contact. The transistor current flows from the substrate, through the base to the buried emitter region. It is then conveyed into the vertical region, which represents a resistive path, and on reaching the surface region splits between two resistive paths included between the vertical region and the surface contacts.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: August 17, 1999
    Assignee: STMicroelectronics, S.r.l.
    Inventor: Sergio Palara
  • Patent number: 5923079
    Abstract: To protect a system efficiently from static electricity and electrostatic discharge (ESD) and thereby prevent the system from becoming defective, a system formed on a first conductivity-type semiconductor substrate includes a pad for receiving a signal, a protection element connected to the pad, and a discharge line connected to the protection element. The protection element includes a single bipolar transistor portion and at least one diode portion located adjacent to the bipolar transistor portion.
    Type: Grant
    Filed: November 28, 1997
    Date of Patent: July 13, 1999
    Assignee: NEC Corporation
    Inventor: Kaoru Narita
  • Patent number: 5912495
    Abstract: The invention relates to a structure for and the method of manufacturing a driver circuit for an inductive load monolithically integrated on a semiconductor substrate doped with a first type of doping agent and on which is grown an epitaxial well having a second type of doping agent. An insulated well doped with the same type of doping agent as the substrate, which houses at least one power transistor of the driver circuit, is provided within the epitaxial well. The epitaxial well also houses a first and a second active area which house the cathode terminal and anode terminal of a protection diode, respectively.
    Type: Grant
    Filed: July 31, 1996
    Date of Patent: June 15, 1999
    Assignee: SGS-Thomson Microelectronics, S.r.l.
    Inventors: Riccardo Depetro, Aldo Novelli
  • Patent number: 5910675
    Abstract: A semiconductor device includes a metal terminal provided on a semiconductor substrate and a protection element. The protection element includes an insulated gate field-effect transistor. The transistor has a first diffusion layer of a reverse conductive-type formed on one conductive type region of the semiconductor substrate and connected to the metal terminal, as its source. The transistor also includes a second diffusion layer of a reverse conductive-type connected to an electrode wire having a constant electric potential, as its source, and has a gate electrode connected to the electrode wire. A lateral bipolar transistor includes a third diffusion layer of a reverse conductive-type formed with a constant spaced distance with respect to the second diffusion layer and connected to the metal terminal, as its collector, and also has the second diffusion layer as its emitter, and furthermore has the one conductive-type region as its base.
    Type: Grant
    Filed: December 11, 1996
    Date of Patent: June 8, 1999
    Assignee: NEC Corporation
    Inventors: Yoko Horiguchi, Kaoru Narita, Takeo Fujii
  • Patent number: 5905296
    Abstract: A resistive structure formed on an integrated circuit substrate is disclosed. The structure includes a plurality of resistive elements serially connected. Each resistive element comprises a forward biased semiconductor junction and a reverse biased semiconductor junction. The resistive value of each resistive element can be varied with a preferred range being from about 500 megohms to about 5 gigaohms. In fabrication, the multiple resistive elements are electrically and physically simultaneously formed and are connected in series to obtain higher resistive values. The disclosed resistive structure allows very high resistances to be obtained using very little planar surface area.
    Type: Grant
    Filed: April 9, 1997
    Date of Patent: May 18, 1999
    Assignee: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Patent number: 5895964
    Abstract: A circuit element is produced in a circuit, and a thermoelectric cooling element comprising two dissimilar metals is thermally coupled to the circuit element for cooling the circuit element. A source is provided for applying a driving current to the circuit element. The circuit is arranged such that the driving current passes to the thermoelectric cooling element as an operating current thereof.
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: April 20, 1999
    Assignee: Pioneer Electronic Corporation
    Inventor: Kazuaki Nakayama
  • Patent number: 5896313
    Abstract: An SRAM memory cell is provided in which a pair of cross-coupled n-type MOS pull-down transistors are coupled to respective parasitically formed bipolar pull-up transistors. The memory cell is formed within a semiconductor layer which extends over a buried layer. The bipolar transistors are formed parasitically from the buried layer and the semiconductor layer used to form the pull-down transistors. The bases of the bipolar transistors may also be dynamically controlled. An SRAM memory array having a plurality of such memory cells and a computer system incorporating the SRAM memory array are also provided.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: April 20, 1999
    Assignee: Micron Technology, Inc.
    Inventors: David A. Kao, Fawad Ahmed
  • Patent number: 5880517
    Abstract: A microwave power transistor device (20) is formed with impedance matching circuitry from a single elongated transistor die (70). Each of one or more transistor elements (56) is integrally formed with a blocking DC capacitor (54) on a common substrate of the transistor die. A wire (60 or 92) is connected between accurately positioned capacitor and transistor base connection points (90 and 80) to provide matching inductance for the parasitic base-collector capacitance of the transistor.
    Type: Grant
    Filed: February 4, 1998
    Date of Patent: March 9, 1999
    Assignee: Northrop Grumman Corporation
    Inventor: Kenneth J. Petrosky
  • Patent number: 5858850
    Abstract: A process of fabricating a semiconductor device includes the steps of: forming a base layer of a bipolar transistor (NPN bipolar transistor) on a semiconductor base body by selective epitaxial growth; and forming a dielectric film of a MIS capacitor on the same semiconductor base body. In this process, when side walls for isolating a base electrode connected to the base layer from an emitter layer formed on the base layer are formed, the dielectric film is formed of a silicon nitride film which is the same as one of films constituting the side walls. Thus, a MIS capacitor can be thus formed on one substrate together with a bipolar transistor only by adding the minimum number of steps to the steps of forming the bipolar transistor.
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: January 12, 1999
    Assignee: Sony Corporation
    Inventor: Takayuki Gomi
  • Patent number: 5838057
    Abstract: An electronic switch (80) having a transistor (T) and a diode (D) formed on a substrate (82) is provided. The electronic switch (80) includes a common transistor collector and diode cathode region (81) of a first conductivity type formed in the substrate (82). The switch (80) also includes a transistor base region (83) of a second conductivity type formed in a first section of the collector region (81) and a transistor emitter region (84) of the first conductivity type formed in a section of the base region (83). Additionally, the electronic switch (80) includes a diode anode region (85) formed of the second conductivity type and in a second section of the collector region (81). At least a portion of the anode region (85) is selectively doped with a metallic dopant to provide centers for charge carrier recombination so as to decrease the recovery time of the diode (D).
    Type: Grant
    Filed: August 3, 1994
    Date of Patent: November 17, 1998
    Assignee: Texas Instruments Incorporated
    Inventors: Michael Maytum, David Garnham
  • Patent number: 5834814
    Abstract: A current mirror circuit comprises first and second lateral-type bipolar transistors having first and second conductive films each formed via an insulation film, on the portion of the surface of a base region between an emitter region and a collector region. The first and second emitter regions and the first and second collector regions formed in the surface region of the base region separately from each other. A diode is used as a bias circuit. The diode applies a bias voltage corresponding to the output current of the first transistor, that is, the reference current, to the first and second conductive films of the first and second transistors, so that the width of the channel formed in a base region is changed in accordance with the reference current, and therefore the current amplification rate of each transistor can be maintained at a high value even if a large operation current is supplied.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: November 10, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takao Ito
  • Patent number: 5832305
    Abstract: A multi-stage analog bi-directional selector which has a low input impedance and cost. The multi-stage analog bi-directional selector includes a plurality of analog switches including first and second bi-polar transistors coupled together at first and second connection points, a primary channel coupled to the first connection points, a plurality of data channels coupled to the second connection points, and an address circuit which causes a single one of the analog switches to form a bi-directional analog data connection between a corresponding single one of the data channels and the primary channel.
    Type: Grant
    Filed: December 2, 1996
    Date of Patent: November 3, 1998
    Assignee: NCR Corporation
    Inventors: Barry D. Briggs, Jose L. Izaguirre
  • Patent number: 5821602
    Abstract: Increased gain and improved stability are realized in using resistive emitter ballasting by including integrated capacitive elements in parallel with the resistive elements in the emitter circuit. A feature of the invention is an integrated capacitor structure having a small surface area to minimize parasitic capacitance, whereby resistor and capacitor surface areas of 100 square micrometers or less are obtained. Another feature of the invention is the use of a high dielectric material in realizing a resistor-capacitor impedance zero at a frequency much lower than the operating frequency of the transistor. For an operating frequency of 2 GHz and resistor values of 50-250 ohms, capacitance required is 3 pF or greater. Another feature of the invention is a method of fabricating the integrated resistive-capacitive element in either a low temperature process or a high temperature process which minimizes capacitor leakage when using a thin high dielectric insulative material between capacitor plates.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: October 13, 1998
    Assignee: Spectrian, Inc.
    Inventors: Francois Hebert, William McCalpin
  • Patent number: 5804866
    Abstract: A method and device for maintaining junction isolation between a second region that is normally clamped at a reference potential, contained within a first region of an opposite type of conductivity whose potential is subject to large inertial swings. The junction is ensured even when the potential of the first region moves toward and beyond the reference potential to which the second region is clamped, by connecting the second region to the reference potential by a switch, and causing the switch to open which places the second region in a floating state, leaving it free to track the potential excursion of the first region. The switch is closed after the potential of the first region has returned to a normal value. A comparator senses a shift of the potential of the second region from the reference potential to which it is clamped. The shift is dynamically induced by the capacitive coupling of the two regions, and triggers off the clamping switch.
    Type: Grant
    Filed: March 21, 1996
    Date of Patent: September 8, 1998
    Assignee: Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno
    Inventors: Natale Aiello, Vito Graziano
  • Patent number: 5773873
    Abstract: A semiconductor device having a differential amplifier circuit portion made of two multi-emitter bipolar transistors (BPT). Each multi-emitter BPT has the same number of a plurality of transistor elements each having an independent emitter electrode. Each transistor element of one multi-emitter BPT and a corresponding transistor element of the other multi-emitter BPT form a transistor element pair, with the emitter electrodes thereof being electrically connected. Each transistor element pair is electrically independent from other transistor element pairs, and the emitter electrodes of each transistor element pair are connected to an emitter current source independently from other emitter current sources.
    Type: Grant
    Filed: March 12, 1996
    Date of Patent: June 30, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasuhiko Kuriyama
  • Patent number: 5763929
    Abstract: A transistor package includes a power bipolar transistor chip having a thermistor on and electrically connected to a bipolar transistor collector electrode. The thermistor exhibits a positive thermal coefficient (PTC) resistance characteristic and is series connected to the transistor collector. Collector current is interrupted by thermistor response to heat generated during excess transistor collector current events to thereby avoid thermal destruction of the device.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: June 9, 1998
    Assignee: Kabushiki Kaisha Tokai Rika Denki Seisakusho
    Inventor: Hitoshi Iwata
  • Patent number: 5760448
    Abstract: A semiconductor device having an electrostatic discharge protection device and at least one accompanying device selected from the group comprising of a N or P channel MOS transistor, CMOS, bipolar transistor and BiCMOS, in which the electrostatic discharge protection device comprises a vertical type bipolar transistor including; a semiconductor substrate; an epitaxial layer laminated on the semiconductor substrate; a buried collector of a first conductivity type which is formed of the semiconductor substrate or which is formed from the surface of the semiconductor substrate to the epitaxial layer; a base of a second conductivity type which is a lightly doped well and formed on the epitaxial layer; and an emitter of the first conductivity type and formed on the surface layer of the base of the second conductivity type; and in which the base is adapted to have impurity concentration and depth so that a punch-through is generated between the emitter and the collector of the electrostatic discharge protection dev
    Type: Grant
    Filed: November 27, 1995
    Date of Patent: June 2, 1998
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Hiroshi Maeda
  • Patent number: 5760424
    Abstract: An integrated circuit arrangement includes an IGBT, provided with a secondary contact connected with the drift area, and a diode connected between the secondary contact and the anode of the IGBT. The cathode of the diode is connected with the anode of the IGBT and the anode of the diode is connected with the secondary contact of the IGBT. In this way the pn-junction of the IGBT, formed through the drift area and the channel area, can be used as an internal free-running diode of the IGBT.
    Type: Grant
    Filed: February 12, 1996
    Date of Patent: June 2, 1998
    Assignee: Siemens Aktiengesellschaft
    Inventor: Klaus-Guenter Oppermann
  • Patent number: 5751052
    Abstract: An inductive driver circuit (10) has a driver transistor (11) that is used for driving loads. An input protection device (13) and a voltage suppression device (12) assist in protecting the transistor (11). The circuit (10), including the driver transistor (11) and the input protection device (13), are formed in a common collector region.
    Type: Grant
    Filed: April 1, 1996
    Date of Patent: May 12, 1998
    Assignee: Motorola, Inc.
    Inventors: David M. Heminger, Vincent L. Mirtich, William H. Grant
  • Patent number: 5751053
    Abstract: A bipolar transistor, an nMOS transistor and pMOS transistor are formed at a main surface of a p-type semiconductor substrate. The bipolar transistor includes a collector layer, a base layer and an emitter layer. Collector layer located immediately under base layer contains impurity of n-type at a concentration not more than 5xl0.sup.18 cm.sup.-3. Base layer located immediately under emitter layer has a diffusion depth not more than 0.3 .mu.m. A semiconductor device including the bipolar transistor having the above structure is used in a circuit performing small amplitude operation. Thereby, it is possible to provide the semiconductor device having the bipolar transistor, which can be manufactured at a low cost and can operate at a high speed.
    Type: Grant
    Filed: June 9, 1997
    Date of Patent: May 12, 1998
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Hiroki Honda
  • Patent number: 5739577
    Abstract: A resistive structure formed on an integrated circuit substrate is disclosed. The structure includes a plurality of resistive elements serially connected. Each resistive element comprises a forward biased semiconductor junction and a reverse biased semiconductor junction. The resistive value of each resistive element can be varied with a preferred range being from about 500 megohms to about 5 gigaohms. In fabrication, the multiple resistive elements are electrically and physically simultaneously formed and are connected in series to obtain higher resistive values. The disclosed resistive structure allows very high resistances to be obtained using very little planar surface area.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: April 14, 1998
    Assignee: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Patent number: 5723875
    Abstract: A semiconductor integrated circuit has a chip check circuit for detecting cracks and other defects in the chip during operation. The chip check circuit extends in the chip from an input terminal to an output terminal so as to scan a predetermined wide area. The chip check circuit has at least one signal line extending near or within a circuit block in the chip so that the signal line can be broken together with the circuit block. The chip check circuit may further comprise one or more inverters, and/or one or more two-wire logic circuits.
    Type: Grant
    Filed: October 23, 1996
    Date of Patent: March 3, 1998
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Noriyuki Abe, Toshimi Abo, Toshirou Shinohara
  • Patent number: 5717244
    Abstract: An N.sup.- layer (11) of a low impurity concentration is formed on an upper major surface of an N.sup.+ layer (13) of a high impurity concentration in a diode (10). A P layer (12) is further formed on its upper major surface. The N.sup.- layer (11) is in a multilayer structure of first to third regions (11a to 11c) having carrier lifetimes .tau..sub.1, .tau..sub.2 and .tau..sub.3 respectively. These lifetimes are in relation .tau..sub.2 <.tau..sub.1 <.tau..sub.3. Due to the large lifetime .tau..sub.3 of the third region (11c), soft recovery can be implemented. The fact that the lifetime .tau..sub.3 of the third region (11c) is large serves as a factor reducing a forward voltage V.sub.f. It is possible to attain soft recovery without increasing the forward voltage V.sub.F by properly designing these lifetimes and thicknesses.
    Type: Grant
    Filed: September 26, 1995
    Date of Patent: February 10, 1998
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Noriyuki Soejima
  • Patent number: 5708287
    Abstract: An n.sup.- -type silicon active layer having a thickness of 6 .mu.m or less is formed on a silicon substrate via a silicon oxide film. An npn bipolar transistor with a low withstand voltage and an IGBT with a high withstand voltage are formed in the active layer. The two devices are insulated and isolated from each other through a trench. The bipolar transistor has an n-type well layer formed in the surface of the active layer. A p-type well layer is formed in the surface of the n-type well layer. The thickness of the n-type well layer under the p-type well layer is set to be 1 .mu.m or more. A first n.sup.+ -type diffusion layer is formed in the surface of the n-type well layer. A p.sup.+ -type diffusion layer and a second n.sup.+ -type diffusion layer are formed in the surface of the p-type well layer. The n-type well layer and the first n.sup.+ -type diffusion layer serve as a collector region. The p-type well layer and the p.sup.+ -type diffusion layer serve as a base region. The second n.sup.
    Type: Grant
    Filed: November 29, 1995
    Date of Patent: January 13, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akio Nakagawa, Yoshihiro Yamaguchi, Tomoko Matsudai
  • Patent number: 5679972
    Abstract: A semiconductor BiCMOS device and method of manufacturing suitable for attaining high packing density and thereby speeding up a switching operation, wherein the device is formed to have one of a source region or a drain region of an MOS transistor be immediately adjacent a base region of a bipolar transistor so as to be electrically connected. In this manner, an electrical terminal is eliminated, thereby permitting a higher packing density.
    Type: Grant
    Filed: July 27, 1995
    Date of Patent: October 21, 1997
    Assignee: LG Semicon Co., Ltd.
    Inventor: Sung Sik Kim
  • Patent number: 5659190
    Abstract: A silicon substrate carries an isolating silicon dioxide layer and a relatively weakly and negatively doped monocrystalline silicon wafer. A component region is delimited in the wafer by an isolating layer. A bipolar transistor in the component region has a positively doped base region which includes a heavily and positively doped base connection and a heavily and negatively doped emitter. The transistor has a PN-junction at the underside of the base region and is series connected with a field effect transistor having a heavily and negatively doped drain connection. The component region is weakly doped and the distance from the PN-junction to the silicon dioxide layer is small so that a region will be readily depleted of charge carriers when applying voltages to the transistors. The voltages produce an electric field of low electrical field strength in the depleted region. This counteracts the breakthrough of a current between the base and the drain connection.
    Type: Grant
    Filed: June 26, 1996
    Date of Patent: August 19, 1997
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventor: Andrej Litwin
  • Patent number: 5652460
    Abstract: An integrated circuit for implementing a resistor network on a die of the integrated circuit. The integrated circuit includes a common conductor, which is disposed on a first side of the die and coupled to resistors of the resistor network. The integrated circuit further includes a substantially conductive substrate through the die. There is further included a conductive back side contact coupled to the substantially conductive substrate. The conductive back side contact is disposed on a second side of the die opposite the first side, whereby the common conductor, the substantially conductive substrate, and the conductive back side contact form a common conducting bus from the common conductor to the conductive back side contact through the die.
    Type: Grant
    Filed: October 6, 1995
    Date of Patent: July 29, 1997
    Assignee: California Micro Devices Corporation
    Inventors: Jeffrey Clifford Kalb, Peruvamba Hariharan, John Dericourt Hurd, Gregg Duncan
  • Patent number: 5648676
    Abstract: A semiconductor device has a first-conduction-type semiconductor substrate (19), an internal circuit including a vertical bipolar transistor (18) formed in a second-conduction-type semiconductor layer (20), and a protective element (14). The protective element comprises a first-conduction-type diffusion layer (22a) formed at an upper part of a second-conduction-type semiconductor layer (20a) disposed on the semiconductor substrate (19), and a second-conduction-type diffusion layer (27, 30) formed in the first-conduction-type diffusion layer (22a). The diffusion layer (27, 30) is at least partly deeper than an emitter diffusion layer (23) of the vertical bipolar transistor (18).
    Type: Grant
    Filed: January 23, 1996
    Date of Patent: July 15, 1997
    Assignee: Fujitsu Limited
    Inventors: Takashi Iwai, Motoo Nakano
  • Patent number: 5631494
    Abstract: A circuit connecting a sub-IGBT element S.sub.2 having a smaller current capacity and a smaller saturated current than the main IGBT element S.sub.1 and a resistance R.sub.1 in series is connected to the main IGBT element S.sub.1 in parallel, a MOSFET element S.sub.3 being connected between the gate electrode of the sub-IGBT element S.sub.2 and the emitter electrode of the main IGBT element S.sub.1, a delay element being connected between the gate electrode of the sub-IGBT element S.sub.2 and the gate electrode of the main IGBT element S.sub.1. In normal operation, the ON-state voltage is small and low loss can be realized. In the event of a short-circuit accident, the sub-IGBT element S.sub.2 detects the short-circuit before the main IGBT element S.sub.1 turns on to prevent an over-current from flowing in the main IGBT element S.sub.1, which substantially improves the short-circuit resistivity of the semiconductor device.
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: May 20, 1997
    Assignee: Hitachi, Ltd.
    Inventors: Naoki Sakurai, Yoshitaka Sugawara
  • Patent number: 5629551
    Abstract: A semiconductor device includes on a semiconductor substrate an output transistor which is composed of a collector region, a first base region and a first emitter region, and a temperature detection transistor composed of the collector region, a second base region and a second emitter region. The output transistor is provided at a center of the collector region of the semiconductor substrate. A vacant region is formed on a center of the output transistor, and the temperature detection transistor is provided in the vacant region.
    Type: Grant
    Filed: July 18, 1995
    Date of Patent: May 13, 1997
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hideaki Nakura, Masami Yokozawa, Kazuhiko Tsubaki, Masasuke Yoshimura
  • Patent number: 5600174
    Abstract: Temperature-sensitive transducers and other circuitry are manufactured by an electrochemical post-processing etch on an integrated circuit fabricated using a conventional CMOS process. Tetramethyl ammonium hydroxide or another anisotropic etchant having similar characterisics is used to selectively etch exposed front-side regions of a p-type silicon substrate, leaving n-type wells suspended from oxide beams. Circuits in the n-wells are thermally and electrically insulated from the substrate.
    Type: Grant
    Filed: October 11, 1994
    Date of Patent: February 4, 1997
    Assignee: The Board of Trustees of the Leeland Stanford Junior University
    Inventors: Richard J. Reay, Erno H. Klaassen
  • Patent number: RE35642
    Abstract: A description is given of two versions of an integrated structure in the emitter switching configuration comprising a high-voltage bipolar power transistor on a low-voltage MOS power transistor. In the vertical MOS version, the emitter region of the bipolar transistor is completely buried, partly in a first N-epitaxial layer and partly in a second N epitaxial layer; the MOS is located above the emitter region. The bipolar is thus completely buried active sturcture. In the horizontal MOS version, in a N-epitaxial layer there are two P+regions, the tint, which constitutes the base of the bipolar transistor, receives the N+emitter region of the same transistor; the second receives two N+regions which constitute the MOS source and drain regions, respectively; the front of the chip is provided with metal plating to ensure the connection between the MOS drain and the bipolar emitter contacts.
    Type: Grant
    Filed: May 22, 1995
    Date of Patent: October 28, 1997
    Assignee: SGS-Thomson Microelectronics, S.r.l.
    Inventors: Ferruccio Frisina, Giuseppe Ferla