Varying Width Or Thickness Of Conductor Patents (Class 257/775)
  • Patent number: 8044394
    Abstract: The invention relates to an arrangement of contact areas and test areas on patterned semiconductor chips. The contact areas and the test areas are electrically connected to one another via a conduction web. Whereas the contact areas are arranged in a first region, which has no components of an integrated circuit, the test areas lie in a second region of the top side of the semiconductor chip, which region has components of an integrated circuit.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: October 25, 2011
    Assignee: Infineon Technologies AG
    Inventors: Werner Ertle, Bernd Goller, Michael Horn, Bernd Kothe
  • Publication number: 20110254174
    Abstract: A semiconductor device having a via chain circuit including a plurality of fine interconnections and an extension interconnection wider than the fine interconnections, having a first end connected to one or more of the fine interconnections and a second end located in an area of the semiconductor device external to the via chain circuit. One or more of the fine interconnections becomes wider gradually towards the connection to the extension interconnection. The extension interconnection is formed in a same layer as the one or more of the fine interconnections connected to the extension interconnection. The one or more of the fine interconnections connected to the extension interconnection is connected to the extension interconnections at a position where the fine interconnections become wider.
    Type: Application
    Filed: June 22, 2011
    Publication date: October 20, 2011
    Applicant: Renesas Electronics Corporation
    Inventor: Yoshihisa Matsubara
  • Patent number: 8039947
    Abstract: An integrated circuit package system is provided including forming a first inner lead having a first inner bottom side and a first outer lead, forming a first side lock of the first inner lead above the first inner bottom side, connecting an integrated circuit die with the first inner lead and the first outer lead, and encapsulating the integrated circuit die and the first side lock.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: October 18, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Jeffrey D. Punzalan, Henry Descalzo Bathan, Zigmund Ramirez Camacho
  • Patent number: 8035231
    Abstract: The semiconductor device 1 includes interconnect layers 10, 20, an IC chip 30, via plugs 42, 44, a seal resin 50, and solder balls 60. The interconnect layer 10 includes a via plug 42. An end face of the via plug 42 on the side of the interconnect layer 20 is smaller in area than the opposite end face, i.e. the end face on the side of the IC chip 30. An end face of the via plug 44 on the side of the interconnect layer 10 is smaller in area than the opposite end face, i.e. the end face on the side of the solder balls 60. The thermal decomposition temperature of the insulating resin 14 constituting the interconnect layer 10 is higher than that of the insulating resin 24 constituting the interconnect layer 20.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: October 11, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yoichiro Kurita, Masaya Kawano, Koji Soejima
  • Patent number: 8035232
    Abstract: An interlayer insulating film is formed on the upper surface of a semiconductor substrate, and lower-level interconnects are formed in the interlayer insulating film. A liner insulating film is formed on the upper surfaces of the interlayer insulating film and lower-level interconnects. An interlayer insulating film is formed on the upper surface of the liner insulating film. Upper-level interconnects are formed in the interlayer insulating film. The lower-level interconnects and the upper-level interconnects are connected with each other through vias. Parts of the liner insulating film formed in via-adjacent regions have a greater thickness than a part thereof formed outside the via-adjacent regions.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: October 11, 2011
    Assignee: Panasonic Corporation
    Inventors: Takeshi Harada, Junichi Shibata, Akira Ueki
  • Patent number: 8030779
    Abstract: A multi-layered metal interconnection includes a diffusion barrier directly formed on a conductive layer, an etching stop layer directly formed on the diffusion barrier, at least one dielectric layer formed over the etch stop layer, at least one of a via formed in the at least one dielectric layer and a trench formed in the at least one dielectric layer.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: October 4, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Hyuk Park
  • Patent number: 8026588
    Abstract: A method and structure are provided to enable wire bond connections over active and/or passive devices and/or low-k dielectrics, formed on an Integrated Circuit die. A semiconductor substrate having active and/or passive devices is provided, with interconnect metallization formed over the active and/or passive devices. A passivation layer formed over the interconnect metallization is provided, wherein openings are formed in the passivation layer to an upper metal layer of the interconnect metallization. Compliant metal bond pads are formed over the passivation layer, wherein the compliant metal bond pads are connected through the openings to the upper metal layer, and wherein the compliant metal bond pads are formed substantially over the active and/or passive devices. The compliant metal bond pads may be formed of a composite metal structure.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: September 27, 2011
    Assignee: Megica Corporation
    Inventors: Jin-Yuan Lee, Ying-Chih Chen, Mou-Shiung Lin
  • Patent number: 8026591
    Abstract: A semiconductor device in which a semiconductor chip, a lead frame and metal wires for electrically connecting the lead frame are sealed with sealing resin. The lead frame has a plurality of lead terminal portions, a supporting portion for supporting the semiconductor chip, and hanging lead portions supporting the supporting portion. Each of the lead terminal portions adjacent to the hanging lead portion is a chamfered lead terminal portion having, at its head, a chamfered portion formed substantially in parallel with the hanging lead portion so as to avoid interference with the hanging lead portion.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: September 27, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Kazutaka Shibata
  • Publication number: 20110227232
    Abstract: A method for forming crenulated conductors and a device having crenulated conductors includes forming a hardmask layer on a dielectric layer, and patterning the hardmask layer. Trenches are etched in the dielectric layer using the hardmask layer such that the trenches have shallower portions and deeper portions alternating along a length of the trench. A conductor is deposited in the trenches such that crenulated conductive lines are formed having different depths periodically disposed along the length of the conductive line.
    Type: Application
    Filed: March 16, 2010
    Publication date: September 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Griselda Bonilla, Elbert E. Huang, Satyanarayana V. Nitta, Shom Ponoth
  • Patent number: 8022553
    Abstract: A mounting substrate and a method of manufacturing the mounting substrate. The mounting substrate can include an insulation layer, a bonding pad buried in one side of the insulation layer in correspondence with a mounting position of a chip, and a circuit pattern electrically connected to the bonding pad. By utilizing certain embodiments of the invention, the process for stacking a solder resist layer can be omitted, as the bonding pads can be implemented in a form recessed from the surface of the insulation layer. In this way, the manufacturing process can be simplified and manufacturing costs can be reduced. Since the surface of the mounting-substrate on which to mount a chip can be kept flat without any protuberances, the occurrence of voids in the underfill can be minimized. This is correlated to obtaining a high degree of reliability, and leads to a greater likelihood of successful mounting.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: September 20, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jin-Yong Ahn, Chang-Sup Ryu, Byung-Youl Min, Myung-Sam Kang
  • Patent number: 8022497
    Abstract: A semiconductor device capable of preventing an interlayer dielectric film from deterioration resulting from a liquid such as a chemical solution penetrating into the interlayer dielectric film and recovering the interlayer dielectric film from deterioration with a prescribed gas is obtained. This semiconductor device comprises a first insulating film formed on a substrate and a first gas-liquid separation film, formed on at least a part of the surface of the first insulating film, composed of a material hardly permeable by a liquid and easily permeable by a gas.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: September 20, 2011
    Assignees: Sanyo Electric Co., Ltd., NEC Corporation, Rohm Co., Ltd.
    Inventors: Yoshinori Shishida, Shinichi Chikaki, Ryotaro Yagi
  • Patent number: 8022536
    Abstract: The present invention provides techniques to fabricate build-up single or multichip modules. In one embodiment, this is accomplished by dispensing die-attach material in one or more pre-etched cavities on a substrate. A semiconductor die is then placed over each pre-etched cavity including the die-attach material by urging a slight downward pressure on the substrate such that an active surface of each placed semiconductor die is disposed across from the substrate and is further substantially coplanar with the substrate. The semiconductor die is then secured to the substrate by curing the die-attach material. A miniature circuit board, including one or more alternating layer of dielectric material and metallization structures, is then formed over the substrate and the active surface of each semiconductor die to electrically interconnect the semiconductor dies.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: September 20, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Tongbi Jiang
  • Patent number: 8018070
    Abstract: Semiconductor device with a first structure comprising a plurality of at least in part parallel linear structures, a second structure comprising a plurality of pad structures, forming at least in part one of the group of linear structure, curved structure, piecewise linear structure and piecewise curved structure which is positioned at an angle to the first structure, and the plurality of pad structures are intersecting at least one of the linear structures in the first structure. An electronic device with at least one semiconductor device, methods for manufacturing a semiconductor device and a mask system are also covered.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: September 13, 2011
    Assignee: Qimonda AG
    Inventors: Stefan Blawid, Ludovic Lattard, Roman Knoefler, Manuela Gutsch, David Pritchard, Martin Roessiger
  • Patent number: 8013348
    Abstract: A novel semiconductor device includes a plurality of light emitting diodes, a plurality of transistors, a source pad, and a plurality of wires. The plurality of transistors drive the plurality of light emitting diodes. The source pad is connected to sources of the plurality of transistors and supplies an electric current to each of the plurality of transistors. The plurality of wires connect the source pad and the sources of the plurality of transistors. The plurality of wires also provide substantially equal resistance to the electric current passing therethrough.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: September 6, 2011
    Assignee: Ricoh Company, Ltd.
    Inventor: Toshiki Kishioka
  • Patent number: 8004090
    Abstract: A first insulating layer including a first contact pad made of conductive polysilicon and a second insulating layer including a second contact pad are formed over a semiconductor silicon layer. After this, a via hole for a through-hole electrode is formed until the via hole penetrates through at least the semiconductor silicon layer and the first contact pad and reaches to the second contact pad.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: August 23, 2011
    Assignee: Elpida Memory, Inc
    Inventor: Shiro Uchiyama
  • Patent number: 7999393
    Abstract: A semiconductor device includes a plurality of first interconnection layers which are provided in an insulating layer and formed in a pattern having a width and space smaller than a resolution limit of an exposure technique, and a second interconnection layer which is provided between the first interconnection layers in the insulating layer and has a width larger than that of a first interconnection layer. A space between the second interconnection layer and each of first interconnection layers adjacent to both sides of the second interconnection layer equals the space between the first interconnection layers.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: August 16, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masato Endo, Tatsuya Kato
  • Patent number: 7999392
    Abstract: A multilayer interconnection structure according to this invention is applied to a case where a plurality of interconnections are formed at a fine pitch and a via is connected to at least one of the interconnections. In the multilayer interconnection structure, a region facing the via is locally narrowed in at least the interconnection, facing the via, of the interconnections adjacent to the interconnection connected to the via.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: August 16, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroto Ohtake, Yoshihiro Hayashi
  • Patent number: 7989939
    Abstract: Provided is a semiconductor package. The semiconductor package includes a bonding wire electrically connecting a first package substrate and a second package substrate to each other and an insulating layer adhering the first package substrate and the second package substrate to each other and covering a portion of the bonding wire.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: August 2, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Ik Hwang, YongJin Jung, Kunho Song
  • Patent number: 7984394
    Abstract: A design structure for an integrated circuit including a first wire of a first level of wiring tracks, a second wire of a second level of wiring tracks, a third wire of a third level of wiring tracks, and a fourth wire located a first distance from the second wire in the second level of wiring tracks. A first via connects the first and second wires at a first location of the second wire. A second via connects the second and third wires at the first location, the second via is substantially axially aligned with the first via. A third via connecting the third and fourth wires at a second location of the fourth wire. A fourth via connecting the first and fourth wires at the second location, the fourth via is substantially axially aligned with the third via. The second, third, and fourth vias, and the third and fourth wires form a path between the first and second wires redundant to the first via.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: July 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Jeanne P. Bickford, Markus Buehler, Jason D. Hibbeler, Juergen Koehl, Edward J. Nowak
  • Patent number: 7977232
    Abstract: A semiconductor wafer may include, but is not limited to, the following elements. A semiconductor substrate has a device region and a dicing region. A stack of inter-layer insulators may extend over the device region and the dicing region. Multi-level interconnections may be disposed in the stack of inter-layer insulators. The multi-level interconnections may extend in the device region. An electrode layer may be disposed over the stack of inter-layer insulators. The electrode layer may extend in the device region. The electrode layer may cover the multi-level interconnections. A cracking stopper groove may be disposed in the dicing region. The cracking stopper groove may be positioned outside the device region.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: July 12, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Toyonori Eto
  • Patent number: 7973415
    Abstract: A through silicon via reaching a pad from a second surface of a semiconductor substrate is formed. A penetration space in the through silicon via is formed of a first hole and a second hole with a diameter smaller than that of the first hole. The first hole is formed from the second surface of the semiconductor substrate to the middle of the interlayer insulating film. Further, the second hole reaching the pad from the bottom of the first hole is formed. Then, the interlayer insulating film formed on the first surface of the semiconductor substrate has a step shape reflecting a step difference between the bottom surface of the first hole and the first surface of the semiconductor substrate. More specifically, the thickness of the interlayer insulating film between the bottom surface of the first hole and the pad is smaller than that in other portions.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: July 5, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Michihiro Kawashita, Yasuhiro Yoshimura, Naotaka Tanaka, Takahiro Naito, Takashi Akazawa
  • Patent number: 7973391
    Abstract: Disclosed are tapered dielectric and conductor structures which provide controlled impedance interconnection while signal conductor lines transition from finer pitches to coarser pitches thereby obviating electrical discontinuities generally associated with changes of circuit contact pitch. Also disclosed are methods for the construction of the devices and applications therefore.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: July 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joseph C. Fjelstad, Kevin P. Grundy, Para K. Segaram, Gary Yasumura
  • Publication number: 20110156274
    Abstract: The present invention provides a semiconductor device capable of suppressing degradation in connection reliability due to the decrease in thickness of a conductive adhesive caused by the movement of a connecting plate in a semiconductor device to which a power transistor is mounted. A step is provided in the thin part of the connecting plate connected to a lead post to lock the connecting plate by contacting the step to the tip of the lead post. Alternatively, a groove is provided in the thin part of the connecting plate to lock the connecting plate by connecting the lead post to only the part of the connecting plate on the tip side from the groove.
    Type: Application
    Filed: March 8, 2011
    Publication date: June 30, 2011
    Applicant: Renesas Technology Corp.
    Inventors: Kenya Kawano, Kisho Ashida, Naotaka Tanaka, Hiroshi Sato, Ichio Shimizu
  • Patent number: 7964971
    Abstract: A flexible column interconnect for a microelectronic substrate includes a plurality of conductive columns extending from a bond pad or other conductive terminal in substantially mutually parallel arrangement, providing redundant current paths between the bond pad and a common cap in the form of a contact pad to which they are all joined. The flexibility of the interconnect may be varied by controlling the column dimensions, height, aspect ratio, number of columns, column material and by applying a supporting layer of dielectric material to a controlled depth about the base of the columns. A large number of interconnects may be formed on a wafer, partial wafer, single die, interposer, circuit board, or other substrate.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: June 21, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Warren M. Farnworth
  • Patent number: 7964969
    Abstract: A first insulating film is provided between a lower interconnect and an upper interconnect. The lower interconnect and the upper interconnect are connected to each other by way of a via formed in the first insulating film. A dummy via or an insulating slit is formed on/in the upper interconnect near the via.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: June 21, 2011
    Assignee: Panasonic Corporation
    Inventor: Takeshi Harada
  • Patent number: 7960797
    Abstract: A semiconductor device structure includes staggered contacts to facilitate small pitches between active-device regions and conductive lines while minimizing one or both of misalignment during fabrication of the contacts and contact resistance between sections of the contacts. The contacts of one row communicate with every other active-device region and are staggered relative to the contacts of another row, which communicate with the remaining active-device regions. Each contact may include a relatively large contact plug with a relatively large upper surface to provide a relatively large amount of tolerance as a contact hole for an upper portion of the contact that is formed. The contact holes may be formed substantially simultaneously with trenches for conductive traces, such as bit lines, in a dual damascene process. Intermediate structures are also disclosed, as are methods for designing semiconductor device structures.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: June 14, 2011
    Assignee: Micron Technology, Inc.
    Inventors: John K. Lee, Hyuntae Kim, Richard L. Stocks, Luan Tran
  • Patent number: 7952203
    Abstract: Methods of forming microelectronic device structures are described. Those methods may include forming a passivation layer on a substrate, wherein the substrate comprises an array of conductive structures, forming a first via in the passivation layer, forming a second via in the passivation layer that exposes at least one of the conductive structures in the array, and wherein the second via is formed within the first via space to form a step via, and forming a conductive material in the step via, wherein a round dimple is formed in the conductive material.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: May 31, 2011
    Assignee: Intel Corporation
    Inventor: Chi-won Hwang
  • Publication number: 20110121464
    Abstract: A semiconductor device has a semiconductor die with a plurality of tapered bumps formed over a surface of the semiconductor die. The tapered bumps can have a non-collapsible portion and collapsible portion. A plurality of conductive traces is formed over a substrate with interconnect sites. A masking layer is formed over the substrate with openings over the conductive traces. The tapered bumps are bonded to the interconnect sites so that the tapered bumps contact the mask layer and conductive traces to form a void within the opening of the mask layer over the substrate. The substrate can be non-wettable to aid with forming the void in the opening of the masking layer. The void provides thermally induced stress relief. Alternatively, the masking layer is sufficiently thin to avoid the tapered interconnect structures contacting the mask layer. An encapsulant or underfill material is deposited between the semiconductor die and substrate.
    Type: Application
    Filed: December 9, 2010
    Publication date: May 26, 2011
    Inventor: Rajendra D. Pendse
  • Patent number: 7948094
    Abstract: The semiconductor device according to the present invention includes a semiconductor layer, an interlayer dielectric film formed on the semiconductor layer, a wire formed on the interlayer dielectric film with a metallic material to have a width of not more than 0.4 ?m, and a broad portion integrally formed on the wire to extend from the wire in the width direction thereof.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: May 24, 2011
    Assignee: Rohm Co., Ltd.
    Inventors: Satoshi Kageyama, Yuichi Nakao
  • Patent number: 7943973
    Abstract: A method for producing a tunnel field-effect transistor is disclosed. Connection regions of different doping types are produced by means of self-aligning implantation methods.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: May 17, 2011
    Assignee: Infineon Technologies AG
    Inventors: Ronald Kakoschke, Helmut Tews
  • Patent number: 7940544
    Abstract: An improvement to a memory system having a hierarchical bitline structure wherein traces that form global write lines are connected to each other using junctions that include multiple vias to reduce capacitance and increase yield. At least one of a pair of traces connected by the vias includes a widened portion that provides sufficient overlap with the other trace to allow the two or more vias to be formed between the traces at the overlap. Parallel traces for global write lines that carry a write signal and its inverse may be positioned more than one maximum-density grid space apart to allow the widened portions to be formed between the traces. A global read line that is formed in a different metal layer from the global write line traces may be positioned in a grid space between the global write line traces to reduce the capacitance of this line.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: May 10, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Fumihiro Kono
  • Patent number: 7936073
    Abstract: A semiconductor device including: a semiconductor substrate including an electrode; a resin protrusion formed on the semiconductor substrate; and an interconnect electrically connected to the electrode and formed to extend over the resin protrusion. The interconnect includes a first portion formed on a top surface of the resin protrusion and a second portion formed on a side of a lower portion of the resin protrusion. The second portion has a width smaller than a width of the first portion.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: May 3, 2011
    Assignee: Seiko Epson Corporation
    Inventors: Hideo Imai, Shuichi Tanaka
  • Patent number: 7932609
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: April 26, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 7932608
    Abstract: An integrated circuit structure includes a semiconductor substrate, a through-silicon via (TSV) extending into the semiconductor substrate, a pad formed over the semiconductor substrate and spaced apart from the TSV, and an interconnect structure formed over the semiconductor substrate and electrically connecting the TSV and the pad. The interconnect structure includes an upper portion formed on the pad and a lower portion adjacent to the pad, and the upper portion extends to electrically connect the TSV.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: April 26, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hong Tseng, Sheng Huang Jao
  • Patent number: 7932606
    Abstract: For simplifying the dual-damascene formation steps of a multilevel Cu interconnect, a formation step of an antireflective film below a photoresist film is omitted. Described specifically, an interlayer insulating film is dry etched with a photoresist film formed thereover as a mask, and interconnect trenches are formed by terminating etching at the surface of a stopper film formed in the interlayer insulating film. The stopper film is made of an SiCN film having a low optical reflectance, thereby causing it to serve as an antireflective film when the photoresist film is exposed.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: April 26, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Katsuhiko Hotta, Kyoko Sasahara
  • Patent number: 7928580
    Abstract: A semiconductor memory device includes a first wiring region and a second wiring region located adjacent to the first wiring region. First lines located in the first wiring region include a first portion, a first lead portion and first inclined portion. Second lines located in the second wiring region include a second portion, a second lead portion and a second inclined portion. The first and second portions are located in parallel with a same pitch, the first and second lead portions are located with a pitch which is larger than the pitch of the first and second portions, the first and second inclined portions extend the same direction at a predetermined angle.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: April 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazuo Saito
  • Patent number: 7923843
    Abstract: Two interconnect layers are electrically connected while reducing the number of manufacturing steps. A contact plug 9c which is formed into a beaded shape in a layer underlying two interconnects 11C and 11D and which also electrically connects the two interconnects 11C and 11D is included. The two interconnects 11C and 11D are separated to each other and are formed in a same layer. The contact plug 9c is simultaneously formed with a contact plug 9b to be connected to an interconnect 4b and a contact plug 9a to be connected to a source/drain region 6.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: April 12, 2011
    Assignee: NEC Electronics Corporation
    Inventors: Michihiro Kobayashi, Hirofumi Nikaido, Nobuyuki Katsuki, Yasuhiro Kawakatsu
  • Patent number: 7919810
    Abstract: System and method for self-aligned etching. According to an embodiment, the present invention provides a method for performing self-aligned source etching process. The method includes a step for providing a substrate material. The method also includes a step for forming a layer of etchable oxide material overlying at least a portion of the substrate material. The layer of etchable oxide material can characterized by a first thickness. The layer of etchable oxide material includes a first portion, a second portion, and a third portion. The second portion is positioned between the first portion and the third portion. The method additionally includes a step for forming a plurality of structures overlying the layer of etchable oxide material. The plurality of structures includes a first structure and a second structure.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: April 5, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Zhongshan Hong, Xue Li
  • Patent number: 7915737
    Abstract: A manufacturing technology is provided capable of improving the reliability of a semiconductor module having a via contact connected to an electrode part of a semiconductor component. The semiconductor module includes: a semiconductor component provided with an electrode part on a mounting surface; an insulating layer provided on the mounting surface of the semiconductor component; a wiring layer formed on the insulating layer; a first conductor part which is embedded in the insulating layer and which is in contact with the electrode part; and a second conductor part which is formed in an aperture provided in the insulating layer above the first conductor part and which electrically connects the first conductor part and the wiring layer.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 29, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Mayumi Nakasato, Yoshio Okayama, Ryosuke Usui
  • Patent number: 7911063
    Abstract: In a semiconductor device according to an aspect of the invention, a direction in which a fourth metal interconnection layer located on a semiconductor layer is extended is orthogonal to a direction in which third interconnection layers ML30 and ML37 located on the fourth interconnection layer are extended. Thus, even in a case where a stress is applied from outside to bonding pads BP1 and BP2 located above, the stress is wholly dispersed by the third interconnection layers and the fourth interconnection layer which are laminated to intersect with each other, and stress concentration on a particular point can be relieved to restrain deterioration in semiconductor device strength to a minimum. Accordingly, it is possible to provide the semiconductor device having a structure in which productivity of the semiconductor device can be improved while the stress concentration applied from outside on the particular point of the bonding pad is relieved.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: March 22, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Shinichi Terazono, Katsuhiko Akao
  • Patent number: 7911062
    Abstract: The present invention proposes a semiconductor device including a semiconductor chip having a plurality of electrodes, a plurality of leads electrically connected to the plurality of electrodes of the semiconductor chip by bonding wires, and a resin for implementing the semiconductor chip, wherein the plurality of leads are comprised of two or more kinds of leads having different rigidities.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: March 22, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Tetsuya Nakatsuka, Koji Serizawa
  • Patent number: 7911012
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: March 22, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Glenn Leedy
  • Publication number: 20110062595
    Abstract: A pattern structure in a semiconductor device includes an extending line and a pad connected with an end portion of the extending line. The pad may have a width that is larger than a width of the extending line. The pad includes a protruding portion extending from a lateral portion of the pad. The pattern structure may be formed by simplified processes and may be employed in various semiconductor devices requiring minute patterns and pads.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 17, 2011
    Applicant: Samsung Electronics Co., Ltd
    Inventors: Jaehwang SIM, Jaeho Min, Jaehan Lee, Keonsoo Kim
  • Patent number: 7906851
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: March 15, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 7900350
    Abstract: A circuit element comprises a wiring board; the wiring board comprises a substrate and a wiring formed on the substrate, and a lid joined on the substrate containing a part of the wiring with a binder and making a sealed space above the substrate, wherein if a spot of the wiring joined with the lid by a binder is a spot of junction, a flank of both flanks of the wiring comprise bends in the spot of junction.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: March 8, 2011
    Assignee: OMRON Corporation
    Inventors: Taku Masai, Koji Sano
  • Patent number: 7897499
    Abstract: A method for fabricating a semiconductor device includes forming electrode patterns over a substrate, wherein the electrode patterns include a hard mask, forming a passivation layer on the electrode patterns, forming an insulation layer on the passivation layer, filling a space between the electrode patterns, planarizing the insulation layer until shoulder portions of the hard mask are planarized, forming a mask pattern on a resultant structure, and etching a portion of the insulation layer to form a contact hole.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Min-Suk Lee, Jae-Young Lee
  • Patent number: 7898087
    Abstract: An electronic device includes: at least one electronic chip comprising a first coefficient of thermal expansion (CTE); and a carrier including a top surface connected to the bottom surface of the chip by solder bumps. The carrier further includes a second CTE that approximately matches the first CTE, and a plurality of through vias from the bottom surface of the carrier to the top surface of the carrier layer. Each through via includes a collar exposed at the top surface of the carrier, a pad exposed at the bottom surface of the carrier, and a post disposed between the collar and the pad. The post extends thorough a volume of space.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: March 1, 2011
    Assignee: International Business Machines Corporation
    Inventor: Timothy J. Chainer
  • Patent number: 7880311
    Abstract: A stacked semiconductor package includes a semiconductor chip module including at least two semiconductor chips, each semiconductor chip having a first face, a second face opposite to the first face, and a circuit part. A thorough portion passes through the first and second faces of the semiconductor chip. A recess part is formed in a portion of the second face where the second face and the through portion meets. A through electrode is electrically connected to the circuit part and is disposed inside of the through portion. A connection member is disposed in the recess part to electrically connect the through electrodes of adjacent stacked semiconductor chips. And the semiconductor chip module is mounted to a substrate. The stacked semiconductor package prevents both gaps between semiconductor chips and misalignment of the through electrode.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: February 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kwon Whan Han
  • Patent number: 7880309
    Abstract: An arrangement of integrated circuit dice, includes first die including a first electrical coupling site and a second die comprising a second electrical coupling site, wherein the second die is stacked onto the first die such that the first electrical coupling site is at least partially exposed, wherein the first electrical coupling site and the second electrical coupling site are directly electrically connected, and a third die arranged above the first die and the second die such that a recess is formed, wherein one of the first electrical coupling sites is arranged in the recess.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: February 1, 2011
    Assignee: Qimonda AG
    Inventor: Camillo Pilla
  • Patent number: 7880308
    Abstract: There is disclosed a semiconductor device comprising at least two substrates, at least one wiring being provided in each of the substrates, the substrates being stacked such that major surfaces on one side of each thereof oppose each other and the wirings being connected between the major surfaces, and a plurality of connecting portions being provided adjacent to each other while connected to each wiring on the major surfaces opposing each other, at least one of the connecting portions provided on the same major surface being formed smaller than the adjacent other connecting portion, the connecting portions being provided at positions opposing each other one to one on the major surface, the connecting portions being connected so that the wirings are connected between the major surfaces, one connecting portion of a pair of the connecting portions connected one to one being formed smaller than the other connecting portion.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: February 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Yoshimura, Yoshiaki Sugizaki