With Ferroelectric Capacitor (epo) Patents (Class 257/E21.664)
  • Patent number: 8518793
    Abstract: A method for forming a MIM capacitor structure includes the steps of obtaining a base structure provided with a recess, the recess exposing a conductive bottom electrode plug; selectively growing Ru on the bottom electrode plug, based on a difference in incubation time of Ru growth on the bottom electrode plug compared to the base structure material; oxidizing the selectively grown Ru; depositing a Ru-comprising bottom electrode over the oxidized Ru; forming a dielectric layer on the Ru-comprising bottom electrode; and—forming a conductive top electrode over the dielectric layer.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: August 27, 2013
    Assignee: IMEC
    Inventors: Min-Soo Kim, Christian Caillat, Johan Swerts
  • Patent number: 8507965
    Abstract: An insulation film (24) having a gradual inclination of a surface is formed by a high density plasma CVD method, an atmospheric pressure CVD method or the like, after a ferroelectric capacitor (23) is formed. Thereafter, an alumina film (25) is formed on the insulation film (24). According to the method, low coverage of the alumina film (25) does not become a problem, and the ferroelectric capacitor (23) is reliably protected.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: August 13, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kazutoshi Izumi, Hitoshi Saito, Naoya Sashida, Kaoru Saigoh, Kouichi Nagai
  • Patent number: 8502291
    Abstract: Some embodiments include memory cells including a memory component having a first conductive material, a second conductive material, and an oxide material between the first conductive material and the second conductive material. A resistance of the memory component is configurable via a current conducted from the first conductive material through the oxide material to the second conductive material. Other embodiments include a diode comprising metal and a dielectric material and a memory component connected in series with the diode. The memory component includes a magnetoresistive material and has a resistance that is changeable via a current conducted through the diode and the magnetoresistive material.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: August 6, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8482044
    Abstract: An aspect of the present disclosure, there is provided semiconductor memory device including a ferroelectric capacitor and a field effect transistor as a memory cell, the ferroelectric capacitor including a lower electrode connected to one of the pair of the impurity diffusion layers, a bit line formed below the lower electrode, wherein each of the memory cells shares the bit line contact with an adjacent memory cell at one side in the first direction to connect to the bit line, and three of the word lines are formed between the bit line contacts in the first direction.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: July 9, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takeshi Hamamoto
  • Patent number: 8455935
    Abstract: A ferroelectric film comprising polyaminodifluoroborane (PADFB). Also a memory device utilizing the ferroelectric film, a method of fabricating a ferroelectric polymer and a ferroelectric solution.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 4, 2013
    Assignees: Sony Corporation, Agency for Science, Technology, and Research
    Inventors: Takehisa Ishida, Sunil Madhukar Bhangale, Han Hong, Christina Li Lin Chai
  • Patent number: 8450168
    Abstract: Ferro-electric capacitor modules, methods of manufacture and design structures. The method of manufacturing the ferro-electric capacitor includes forming a barrier layer on an insulator layer of a CMOS structure. The method further includes forming a top plate and a bottom plate over the barrier layer. The method further includes forming a ferro-electric material between the top plate and the bottom plate. The method further includes encapsulating the barrier layer, top plate, bottom plate and ferro-electric material with an encapsulating material. The method further includes forming contacts to the top plate and bottom plate, through the encapsulating material. At least the contact to the top plate and a contact to a diffusion of the CMOS structure are in electrical connection through a common wire.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Matthew D. Moon, William J. Murphy, James S. Nakos, Paul W. Pastel, Brett A. Philips
  • Patent number: 8440508
    Abstract: An integrated circuit containing a FeCap array. The FeCap array is at least partially surrounded on the sides by hydrogen barrier walls and on the top by a hydrogen barrier top plate. A method for at least partially enclosing a FeCap array with hydrogen barrier walls and a hydrogen barrier top plate.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: May 14, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Kezhakkedath R. Udayakumar, Scott R. Summerfelt, Ted S. Moise, Manoj K. Jain
  • Patent number: 8404556
    Abstract: In forming a ferro-electric capacitor structure of an FeRAM, a lower electrode film is formed (step S1), a first ferro-electric film is formed (step S2), the first ferro-electric film is crystallized by a first heat treatment (step S3), a second ferro-electric film in an amorphous state is formed on the first ferro-electric film (step S4), an SRO film in an amorphous state is formed on the second ferro-electric film (step S5), a first upper electrode film is formed on the SRO film (step S6), and the second ferro-electric film and the SRO film are crystallized by a second heat treatment (step S7).
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: March 26, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Yuya Sugiyama
  • Patent number: 8377719
    Abstract: A process of forming an integrated circuit containing matching components with identical layouts and hydrogen permeable dummy vias in identical configurations over the matching components.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: February 19, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Scott R. Summerfelt, Rajni J. Aggarwal
  • Patent number: 8372662
    Abstract: A nonvolatile ferroelectric perpendicular electrode cell comprises a ferroelectric capacitor and a serial PN diode switch. The ferroelectric capacitor includes a word line perpendicular electrode as a first electrode and a storage perpendicular electrode as a second electrode apart at a predetermined interval from the word line perpendicular electrode to have a column type, where a ferroelectric material is filled in a space where the first electrode are separated from the second electrode. The serial PN diode switch, which is connected between a bit line and the ferroelectric capacitor, selectively switches a current direction between the bit line and the ferroelectric capacitor depending on voltage change between the bit line and the ferroelectric capacitor.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: February 12, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hee Bok Kang
  • Patent number: 8367541
    Abstract: After a ferroelectric capacitor is formed, an Al wiring (conductive pad) connected to the ferroelectric capacitor is formed. Then, a silicon oxide film and a silicon nitride film are formed around the Al wiring. Thereafter, as a penetration inhibiting film which inhibits penetration of moisture into the silicon oxide film, an Al2O3 film is formed.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: February 5, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kouichi Nagai, Hitoshi Saito, Kaoru Sugawara, Makoto Takahashi, Masahito Kudo, Kazuhiro Asai, Yukimasa Miyazaki, Katsuhiro Sato, Kaoru Saigoh
  • Patent number: 8361811
    Abstract: An electronic component is provided on a substrate. A thin-film capacitor is attached to the substrate, the thin-film capacitor includes a pyrochlore or perovskite dielectric layer between a plurality of electrode layers, the electrode layers being formed from a conductive thin-film material. A reactive barrier layer is deposited over the thin-film capacitor. The reactive barrier layer includes an oxide having an element with more than one valence state, wherein the element with more than one valence state has a molar ratio of the molar amount of the element that is in its highest valence state to its total molar amount in the barrier of 50% to 100%. Optionally layers of other materials may intervene between the capacitor and reactive barrier layer. The reactive barrier layer may be paraelectric and the electronic component may be a tunable capacitor.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: January 29, 2013
    Assignee: Research In Motion RF, Inc.
    Inventors: Marina Zelner, Mircea Capanu, Paul Bun Cheuk Woo, Susan C. Nagy
  • Patent number: 8344434
    Abstract: The present invention provides a method for manufacturing a semiconductor device, including the steps of: forming a first ferroelectric film on a first conductive film by a film-forming method including at least a step of forming a film by a sol-gel method; forming a second ferroelectric film on the first ferroelectric film by a sputtering method; forming a second conductive film on the second ferroelectric film; and forming a capacitor provided with a lower electrode, a capacitor dielectric film and an upper electrode by patterning the first conductive film, the first and second ferroelectric films and the second conductive film.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: January 1, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Wensheng Wang, Yoshimasa Horii
  • Patent number: 8324671
    Abstract: A semiconductor device has a ferroelectric capacitor having a ferroelectric film, an interlayer insulating film having a first layer formed on the ferroelectric capacitor, a plug and a wiring connecting to the ferroelectric capacitor, and a dummy plug in the vicinity of the ferroelectric capacitor.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: December 4, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Aki Dote, Kazutoshi Izumi
  • Patent number: 8323988
    Abstract: The use of a monolayer or partial monolayer sequencing process, such as atomic layer deposition (ALD), to form a zirconium substituted layer of barium titanium oxide (BaTiO3), produces a reliable ferroelectric structure for use in a variety of electronic devices such as a dielectric in nonvolatile random access memories (NVRAM), tunable dielectrics for multi layer ceramic capacitors (MLCC), infrared sensors and electro-optic modulators. In various embodiments, structures can be formed by depositing alternating layers of barium titanate and barium zirconate by ALD on a substrate surface using precursor chemicals, and repeating to form a sequentially deposited interleaved structure of desired thickness and composition. Such a layer may be used as the gate insulator of a MOSFET, or as a capacitor dielectric.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: December 4, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20120241907
    Abstract: An integrated circuit containing a ferroelectric capacitor, an underlying hydrogen barrier, and an overlying hydrogen barrier layer. A method for forming an integrated circuit containing a ferroelectric capacitor, an underlying hydrogen barrier, and an overlying hydrogen barrier layer.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 27, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: RAJNI J. AGGARWAL, SCOTT R. SUMMERFELT, GUL B. BASIM, TED S. MOISE
  • Publication number: 20120220057
    Abstract: Ferroelectric capacitors (42) are formed over a semiconductor substrate (10), then, a barrier film (46) directly covering the ferroelectric capacitors (42) is formed. Thereafter, wirings (56a etc.) connected to the ferroelectric capacitors (42) are formed. Further, a barrier film (58) is formed at a position higher than the wirings (56a etc.). In forming the barrier film (46), a film stack is formed, the film stack including at least two kinds of diffusion preventive films (46a and 46b) having different components and preventing diffusion of hydrogen or water.
    Type: Application
    Filed: May 10, 2012
    Publication date: August 30, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Wensheng Wang
  • Patent number: 8237264
    Abstract: A method of manufacturing a semiconductor device has forming a ferroelectric film over a substrate, placing the substrate having the ferroelectric film in a chamber substantially held in vacuum, introducing oxygen and an inert gas into the chamber, annealing the ferroelectric film in the chamber, and containing oxygen and the inert gas while the chamber is maintained sealed.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: August 7, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Patent number: 8236643
    Abstract: A method of manufacturing a semiconductor device with a ferroelectric capacitor, including, forming a lower insulating film on a semiconductor substrate, covering a MOS transistor, forming a lower electrode on the lower insulating film, forming a ferroelectric dielectric oxide film on the lower electrode, forming a first upper electrode on the dielectric oxide film, made of conductive oxide having a composition poor in oxygen, forming a second upper electrode on the first upper electrode, made of conductive oxide having a composition nearer to the stoichiometry, forming a third upper electrode on the second upper electrode, having a composition containing metal of the platinum group, constituting a ferroelectric capacitor, and forming a multilayer wiring structure above the lower interlevel insulating film, covering the ferroelectric capacitor, wherein the third upper electrode has a less oxygen composition than the first and second upper electrodes.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: August 7, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Patent number: 8216857
    Abstract: A ferroelectric memory device includes a field effect transistor formed on a semiconductor substrate, an interlayer insulation film formed on the semiconductor substrate so as to cover the field effect transistor, a conductive plug formed in the interlayer insulation film in contact with the first diffusion region, and a ferroelectric capacitor formed over the interlayer insulation in contact with the conductive plug, wherein the ferroelectric capacitor includes a ferroelectric film and upper and lower electrodes sandwiching the ferroelectric film respectively from above and below, the lower electrode being connected electrically to the conductive plug, a layer containing oxygen being interposed between the conductive plug and the lower electrode, a layer containing nitrogen being interposed between the layer containing oxygen and the lower electrode, a self-aligned layer being interposed between the layer containing nitrogen and the lower electrode.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: July 10, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoya Sashida
  • Patent number: 8198126
    Abstract: The invention relates to a method for producing a solid electrolytic capacitor with excellent LC value, comprising sequentially stacking a dielectric oxide film, a semiconductor layer and an electrode layer on a sintered body of conductive powder to which an anode lead is connected and then encapsulating the whole with an outer jacket resin, wherein surface area of a cathode plate used in forming the semiconductor layer on the dielectric oxide film by applying current between the conductor having the dielectric oxide film thereon used as anode and the cathode plate provided in electrolysis solution is made larger by 10 times or more than its apparent surface area to thereby efficiently form the semiconductor layer, a capacitor produced by the method, and electronic circuits and electronic devices using the capacitor.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: June 12, 2012
    Assignee: Showa Denko K.K.
    Inventor: Kazumi Naito
  • Patent number: 8183610
    Abstract: According to an aspect of the present invention, there is provided a nonvolatile memory including: a cell transistor including: a gate electrode and first and second diffusion layers; a second insulating film covering the cell transistor; first and second plugs penetrating the second insulating film to reach the first and second diffusion layers, respectively; a ferroelectric capacitor having a ferroelectric film and first and second electrodes, the first electrode contacting with the first plug; a first conductive spacer contacting with the second plug and including the same material as the first electrode; a third insulating film covering side faces of the first electrode, the ferroelectric film and the first conductive spacer; and a first wiring that is continuously formed with the second electrode and connected to the first conductive spacer and that includes the same material as the second electrode.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: May 22, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshinori Kumura
  • Patent number: 8153447
    Abstract: A nonvolatile ferroelectric perpendicular electrode cell comprises a ferroelectric capacitor and a serial PN diode switch. The ferroelectric capacitor includes a word line perpendicular electrode as a first electrode and a storage perpendicular electrode as a second electrode apart at a predetermined interval from the word line perpendicular electrode to have a column type, where a ferroelectric material is filled in a space where the first electrode are separated from the second electrode. The serial PN diode switch, which is connected between a bit line and the ferroelectric capacitor, selectively switches a current direction between the bit line and the ferroelectric capacitor depending on voltage change between the bit line and the ferroelectric capacitor.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: April 10, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hee Bok Kang
  • Patent number: 8148798
    Abstract: The semiconductor device includes a capacitor 36 formed over a semiconductor substrate 10 and including a lower electrode 30, a dielectric film 32 and an upper electrode 34; a first insulation film 58 formed above the capacitor 36; a first interconnection 88a formed over the first insulation film 68; a second insulation film 90 formed over the first insulation film 68 and over the first interconnection 88a; an electrode pad 102 formed over the second insulation film 90: and a monolithic conductor 100 buried in the second insulation film 90 immediately below the electrode pad 102 and buried through the second insulation film 90 down to a part of at least the first insulation layer 68.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: April 3, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Takahiro Yamagata
  • Patent number: 8134194
    Abstract: Some embodiments include memory cells including a memory component having a first conductive material, a second conductive material, and an oxide material between the first conductive material and the second conductive material. A resistance of the memory component is configurable via a current conducted from the first conductive material through the oxide material to the second conductive material. Other embodiments include a diode including metal and a dielectric material and a memory component connected in series with the diode. The memory component includes a magnetoresistive material and has a resistance that is changeable via a current conducted through the diode and the magnetoresistive material.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: March 13, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Publication number: 20120056322
    Abstract: A semiconductor device is provided having a pad with an improved moisture blocking ability. The semiconductor device has: a circuit portion including a plurality of semiconductor elements formed on a semiconductor substrate; lamination of insulator covering the circuit portion, including a passivation film as an uppermost layer having openings; ferro-electric capacitors formed in the lamination of insulator; wiring structure formed in the lamination of insulator and connected to the semiconductor elements and the ferro-electric capacitors; pad electrodes connected to the wiring structure, formed in the lamination of insulator and exposed in the openings of the passivation film; a conductive pad protection film, including a Pd film, covering each pad electrode via the opening of the passivation film, and extending on the passivation film; and stud bump or bonding wire connected to the pad electrode via the conductive pad protection film.
    Type: Application
    Filed: November 10, 2011
    Publication date: March 8, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Kaoru Saigoh, Kouichi Nagai
  • Patent number: 8129200
    Abstract: A nonvolatile ferroelectric memory device includes a plurality of unit cells. Each of the unit cells includes a cell capacitor and a cell transistor. The cell capacitor includes a storage node, a ferroelectric layer, and a plate line. The cell capacitors of more than one of the plurality of unit cells are provided in a trench.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: March 6, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hee Bok Kang
  • Patent number: 8129767
    Abstract: Ferroelectric polymer memory modules are described. In an example, a module has a first set of layers including a first ILD layer defining trenches therein, a first electrode layer disposed in the trenches of the first ILD layer, a first conductive polymer layer disposed on the first electrode layer and in the trenches of the first ILD layer, and a ferroelectric polymer layer disposed on the first conductive polymer layer, in and extending beyond the trenches of the first ILD layer. The module also has a second set of layers disposed on the first set of layers to define memory cells therewith. The second set of layers includes a second ILD layer defining trenches therein, a second conductive polymer layer disposed in the trenches of the second ILD layer, and a second electrode layer disposed on the second conductive polymer layer.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: March 6, 2012
    Assignee: Intel Corporation
    Inventors: Lee D. Rockford, Ebrahim Andideh
  • Patent number: 8120087
    Abstract: A semiconductor device includes an insulating film provided over a semiconductor substrate, a conductive plug buried in the insulating film, an underlying conductive film which is provided on the conductive plug and on the insulating film and which has a flat upper surface, and a ferroelectric capacitor provided on the underlying conductive film. At least in a region on the conductive plug, the concentration of nitrogen in the underlying conductive film gradually decreases from the upper surface to the inside.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: February 21, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoya Sashida
  • Publication number: 20120032300
    Abstract: A lower electrode film is formed above a substrate. A ferroelectric film is formed above the lower electrode film. An amorphous intermediate film of a perovskite-type conductive oxide is formed above the ferroelectric film. A first upper electrode film comprising oxide of at least one metal selected from a group of Pt, Pd, Rh, Ir, Ru, and Os is formed on the intermediate film. The intermediate film is crystallized by carrying out a first heat treatment in an atmosphere containing an oxidizing gas after the formation of the first upper electrode film. After the first heat treatment, a second upper electrode film comprising oxide of at least one metal selected from a group of Pt, Pd, Rh, Ir, Ru, and Os is formed on the first upper electrode film, at a temperature lower than the growth temperature for the first upper electrode film.
    Type: Application
    Filed: May 18, 2011
    Publication date: February 9, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Wensheng Wang
  • Patent number: 8105850
    Abstract: Processes for selectively patterning a magnetic film structure generally include selectively etching an exposed portion of a freelayer disposed on a tunnel barrier layer by a wet process, which includes exposing the freelayer to an etchant solution comprising at least one acid and an organophosphorus acid inhibitor or salt thereof, stopping on the tunnel barrier layer.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: David W. Abraham, Assefa Solomon, Eugene J. O'Sullivan
  • Patent number: 8101982
    Abstract: A memory device is provided. The memory device including memory cells having at least three stacked electrodes spaced apart pairwise by dielectric material so that the pairs of electrodes form respective capacitor layers. The capacitors are connected electrically in parallel to each other. The dielectric material is optionally ferroelectric material, in which case the capacitors are ferrocapacitors.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: January 24, 2012
    Assignee: Sony Corporation
    Inventor: Takehisa Ishida
  • Patent number: 8093698
    Abstract: An electronic device includes a first electrode, a second electrode and an insulating layer between the first and second electrodes, which insulating layer may be susceptible to reduction by H2. A gettering layer is provided on and in contact with the first electrode, the gettering layer acting as a protective layer for substantially avoiding reduction of the insulating layer by capturing and immobilizing H2. A glue layer may be provided between the gettering layer and first electrode. An additional gettering layer may be provided on and in contact with the second electrode, and a glue layer may be provided between the second electrode and additional gettering layer.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: January 10, 2012
    Assignee: Spansion LLC
    Inventors: Manuj Rathor, Matthew Buynoski, Joffre F. Bernard, Steven Avanzino, Suzette K. Pangrle
  • Patent number: 8093070
    Abstract: A method is provided for fabricating a ferroelectric capacitor structure including a method for etching and cleaning patterned ferroelectric capacitor structures in a semiconductor device. The method comprises etching portions of an upper electrode, etching ferroelectric material, and etching a lower electrode to define a patterned ferroelectric capacitor structure, and etching a portion of a lower electrode diffusion barrier structure. The method further comprises ashing the patterned ferroelectric capacitor structure using a first ashing process, where the ash comprises an oxygen/nitrogen/water-containing ash, performing a wet clean process after the first ashing process, and ashing the patterned ferroelectric capacitor structure using a second ashing process.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: January 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Francis Gabriel Celii, Kezhakkedath R. Udayakumar, Gregory B. Shinn, Theodore S. Moise, Scott R. Summerfelt
  • Publication number: 20110316058
    Abstract: Ferro-electric capacitor modules, methods of manufacture and design structures. The method of manufacturing the ferro-electric capacitor includes forming a barrier layer on an insulator layer of a CMOS structure. The method further includes forming a top plate and a bottom plate over the barrier layer. The method further includes forming a ferro-electric material between the top plate and the bottom plate. The method further includes encapsulating the barrier layer, top plate, bottom plate and ferro-electric material with an encapsulating material. The method further includes forming contacts to the top plate and bottom plate, through the encapsulating material. At least the contact to the top plate and a contact to a diffusion of the CMOS structure are in electrical connection through a common wire.
    Type: Application
    Filed: June 25, 2010
    Publication date: December 29, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey P. GAMBINO, Matthew D. MOON, William J. MURPHY, James S. NAKOS, Paul W. PASTEL, Brett A. PHILIPS
  • Patent number: 8080845
    Abstract: A semiconductor device includes a gate insulating film formed over a semiconductor substrate, a gate electrode formed over the gate insulating film, a source region formed in the semiconductor substrate, a first drain region formed on the other side of the gate electrode and formed in the semiconductor substrate, the first drain region having one end extending below the gate electrode, the first drain region having a first impurity concentration, a second drain region formed in the first drain region and spaced apart from the gate electrode by a first distance, the second drain region having a second impurity concentration higher than the first impurity concentration, a third drain region formed in the first drain region and spaced apart from the gate electrode by a second distance, the second distance being greater than the first distance, the third drain region having a third impurity concentration.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: December 20, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Masashi Shima
  • Patent number: 8062943
    Abstract: A capacitor with zirconium oxide and a method for fabricating the same are provided. The method includes: forming a storage node; forming a multi-layered dielectric structure on the storage node, the multi-layered dielectric structure including a zirconium oxide (ZrO2) layer and an aluminum oxide (Al2O3) layer; and forming a plate electrode on the multi-layered dielectric structure.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: November 22, 2011
    Assignee: Hynix Semiconductor
    Inventor: Kee-jeung Lee
  • Patent number: 8053251
    Abstract: A temperature-compensated capacitor device has ferroelectric properties and includes a ferroelectric capacitor using a ferroelectric material such as a metal oxide ferroelectric material, a negative-temperature-variable capacitor using a negative-temperature-coefficient-of-capacitance material such as a metal oxide paraelectric material, and an electrical series connection between the negative-temperature-variable capacitor and the ferroelectric capacitor. The temperature-compensated capacitor device may be formed as an integrated layered structure, or as separate capacitors with a discrete electrical connection therebetween.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: November 8, 2011
    Assignee: Raytheon Company
    Inventors: T. Kirk Dougherty, John J. Drab
  • Patent number: 8044447
    Abstract: There is provided a semiconductor device including a silicon substrate, a source/drain region formed in a surface layer of the silicon substrate, a first insulating film provided with a first hole on the first source/drain region, a conductive film formed on an inner surface of the first hole, a filler body, which is formed with a thickness to fill the first hole on the first conductive film, forms a first conduct plug together with the conductive film, and is formed of an insulating material with an upper surface being amorphous, and a capacitor, which is formed on the first contact plug and is provided with a lower electrode electrically connected to the conductive film, a capacitor dielectric film formed of a ferroelectric material, and an upper electrode.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: October 25, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yoichi Okita, Genichi Komuro
  • Patent number: 8026561
    Abstract: A spin MOSFET includes: a first ferromagnetic layer provided on an upper face of a semiconductor substrate, and having a fixed magnetization direction perpendicular to a film plane; a semiconductor layer provided on an upper face of the first ferromagnetic layer, including a lower face opposed to the upper face of the first ferromagnetic layer, an upper face opposed to the lower face, and side faces different from the lower face and the upper face; a second ferromagnetic layer provided on the upper face of the semiconductor layer, and having a variable magnetization direction perpendicular to a film plane; a first tunnel barrier provided on an upper face of the second ferromagnetic layer; a third ferromagnetic layer provided on an upper face of the first tunnel barrier; a gate insulating film provided on the side faces of the semiconductor layer; and a gate electrode provided on the side faces of the semiconductor layer with the gate insulating film being interposed therebetween.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: September 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Saito, Hideyuki Sugiyama, Tomoaki Inokuchi, Takao Marukame, Mizue Ishikawa
  • Patent number: 8021896
    Abstract: A semiconductor substrate with an insulating film, a barrier layer containing a metal and formed over the insulating film in a region that includes a peripheral edge part of a semiconductor substrate, a capacitor lower electrode layer formed on the barrier layer and having an edge-cut on the peripheral edge part of the semiconductor substrate, an oxide layer formed on the barrier layer at the peripheral edge part where the barrier layer is not covered by the lower electrode layer, a ferroelectric layer formed on the lower electrode layer and the oxide layer, and a capacitor upper electrode layer formed over the ferroelectric layer.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: September 20, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Osamu Matsuura
  • Patent number: 8004030
    Abstract: Provided is a semiconductor device that includes: a base insulating film 25 formed above a silicon substrate 10; a ferroelectric capacitor Q formed on the base insulating film 25; multiple interlayer insulating films 35, 48, and 62, and metal interconnections 45, 58, and 72 which are alternately formed on and above the capacitor Q; and conductive plugs 57 which are respectively formed inside holes 54a provided in the interlayer insulating films 48 and are electrically connected to the metal interconnections 45. In the semiconductor device, a first capacitor protection insulating film 50 is formed on an upper surface of the interlayer insulating film 48 by sequentially stacking a first insulating metal oxide film 50a, an intermediate insulating film 50b having a relative dielectric constant lower than that of the interlayer insulating film 48, and a second insulating metal oxide film 50c; and the holes 54a are also formed in the first capacitor protection insulating film 50.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: August 23, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Patent number: 7982252
    Abstract: A dual-gate non-volatile memory cell includes a first dielectric layer extending over a first gate, a semiconductor region extending over the first dielectric layer, a second dielectric layer comprising tunnel oxide extending over the semiconductor region, a ferroelectric layer extending over the second dielectric layer, and a second gate extending over the ferroelectric layer.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: July 19, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hee-Bok Kang
  • Patent number: 7927889
    Abstract: A method for manufacturing a ferroelectric memory device includes: forming a conductive base layer above a substrate; and laminating above the base layer a first electrode, a ferroelectric layer and a second electrode, wherein, prior to the step of forming the base layer, the method includes forming an active element in the substrate, forming an interlayer dielectric film on the substrate, and forming a contact plug in the interlayer dielectric film, and wherein the step of forming the base layer includes: forming a first conductive layer composed of a conductive material having a self-orienting property on the interlayer dielectric film including the contact plug; planarizing the first conductive layer by a chemical mechanical polishing method thereby forming a planarized first conductive layer that covers the interlayer dielectric film including the contact plug; applying an ammonia plasma process to a surface of the planarized first conductive layer; forming a titanium layer on the planarized first conduct
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: April 19, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Hiroyuki Mitsui
  • Patent number: 7927891
    Abstract: A lower electrode film is formed above a semiconductor substrate first, and then a ferroelectric film is formed on the lower electrode film. After that, an upper electrode film is formed on the ferroelectric film. When forming the upper electrode, an IrOx film containing crystallized small crystals when formed is formed on the ferroelectric film first, and then an IrOx film containing columnar crystals is formed.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: April 19, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Patent number: 7928489
    Abstract: There is formed a gate electrode (word line) via a gate insulating film on a semiconductor substrate, the gate electrode extending in the direction inclining at an angle of approximately 45 degrees to the extending direction of an element region. The element region is divided into three portions by the two gate electrodes. In each element region portion, two MOS transistors are provided. A bit line is connected to a W plug provided in the central region portion and lower electrodes of two ferroelectric capacitors are connected to other W plugs provided in both end region portions. The extending direction of the bit line inclines approximately 45 degrees to the extending direction of the element region.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: April 19, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Takashi Ando
  • Patent number: 7928479
    Abstract: A ferroelectric capacitor is formed over a semiconductor substrate (10), and thereafter, interlayer insulating films (48, 50, 52) covering the ferroelectric capacitor are formed. Next, a contact hole (54) reaching a top electrode (40) is formed in the interlayer insulating films (48, 50, 52). Next, a wiring (58) electrically connected to the top electrode (40) through the contact hole (54) is formed on the interlayer insulating films (48, 50, 52). At the time of forming the top electrode (40), conductive oxide films (40a, 40b) are formed, and then a cap film (40c) composed of a noble metal exhibiting less catalytic action than Pt and having a thickness of 150 nm or less is formed on the conductive oxide films (40a, 40b).
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: April 19, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Patent number: 7923264
    Abstract: A first passive ferroelectric memory element comprising a first electrode system and a second electrode system, wherein said first electrode system is at least partly insulated from said second electrode system by an element system comprising at least one ferroelectric element, wherein said first electrode system is a conductive surface, or a conductive layer; wherein said second electrode system is an electrode pattern or a plurality of isolated conductive areas in contact with, for read-out or data-input purposes only, a plurality of conducting pins isolated from one another.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: April 12, 2011
    Assignee: Agfa-Gevaert N.V.
    Inventors: Luc Leenders, Michel Werts
  • Patent number: 7910968
    Abstract: A ferroelectric capacitor (42) is formed over a semiconductor substrate (10), and thereafter, a barrier film (46) directly covering the ferroelectric capacitor (42) is formed. Then, an interlayer insulating film (48) is formed and flattened. Then, an inclined groove is formed in the interlayer insulating film (48), and a barrier film (50) is formed over the entire surface.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: March 22, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Patent number: 7910967
    Abstract: A ferroelectric capacitor having a three-dimensional structure, a nonvolatile memory device having the same, and a method of fabricating the same are provided. The ferroelectric capacitor may include a trench-type lower electrode, at least one layer formed around the lower electrode, a ferroelectric layer (PZT layer) formed on the lower electrode and the at least one layer and an upper electrode formed on the ferroelectric layer. The at least one layer may be at least one insulating interlayer and the at least one layer may also be at least one diffusion barrier layer. The at least one layer may be formed of an insulating material excluding SiO2 or may have a perovskite crystal structure excluding Pb.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: March 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Shin, Young-soo Park, June-mo Koo, Byoung-jae Bae, I-hun Song, Suk-pil Kim