Arrangements For Conducting Electric Current To Or From Solid-state Body In Operation, E.g., Leads, Terminal Arrangements (epo) Patents (Class 257/E23.01)
  • Patent number: 8786092
    Abstract: A semiconductor integrated circuit device includes: a rectangular shaped semiconductor substrate; a metal wiring layer formed on or over the semiconductor substrate; and a passivation layer covering the metal wiring layer. A corner non-wiring region where no portion of the metal wiring layer is formed is disposed in a corner of the semiconductor substrate. A slit is formed in a portion of the metal wiring layer which is close to the corner of the semiconductor substrate. The passivation layer includes a first passivation layer which is formed on the metal wiring layer and a second passivation layer which is formed on the first passivation layer. The first passivation layer is formed of a material that is softer than a material of the second passivation layer.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 22, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Mitsuru Okazaki, Youichi Kajiwara, Naoki Takahashi, Akira Shimizu
  • Patent number: 8786082
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a substrate, at least two pads, a passivation layer, at least two under bump metallization (UBM) layers and at least two bumps. The pads are disposed adjacent to each other on the substrate along the first direction. The passivation layer covers the substrate and the peripheral upper surface of each pad to define an opening. Each of the openings defines an opening projection along the second direction. The opening projections are disposed adjacent to each other but not overlapping with each other. Furthermore, the first direction is perpendicular to the second direction. The UBM layers are disposed on the corresponding openings, and the bumps are respectively disposed on the corresponding UBM layers. With the above arrangements, the width of each bump of the semiconductor structure of the present invention could be widened without being limited by the bump pitch.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: July 22, 2014
    Assignee: Chipmos Technologies Inc.
    Inventor: Geng-Shin Shen
  • Patent number: 8786059
    Abstract: A structure and method for producing the same is disclosed. The structure includes an organic passivation layer with solids suspended therein. Preferential etch to remove a portion of the organic material and expose portions of such solids creates enhanced surface roughness, which provides a significant advantage with respect to adhesion of that passivation layer to the packaging underfill material.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alexandre Blander, Jon A Casey, Timothy H Daubenspeck, Ian D Melville, Jennifer V Muncy, Marie-Claude Paquet
  • Patent number: 8786080
    Abstract: Systems including an input/output (I/O) stack and methods for fabricating such systems are described. In one implementation, the methods include stacking an I/O die including I/O elements and excluding a logic element. Also in one implementation, the methods further include stacking an integrated circuit die with respect to the I/O die. The integrated circuit includes logic elements and excludes an I/O element. The separation of the I/O die from the integrated circuit die provides various benefits, such as independent development of each of the dies and more space for the I/O elements on an I/O substrate of the I/O die compared to that in a conventional die. The increase in space allows new process generation of the integrated circuit die in which an increasing number of logic elements are fitted within the same surface area of a substrate of the integrated circuit die.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: July 22, 2014
    Assignee: Altera Corporation
    Inventors: Chooi Pei Lim, Jordan Plofsky, Yee Liang Tan, Teik Tiong Toong
  • Patent number: 8772915
    Abstract: According to one exemplary embodiment, a semiconductor die with on-die preferred interface selection includes at least two groups of pads situated on an active surface of the semiconductor die, where each of the at least two groups of pads is coupled to its associated interface in the die. A set of bumps is mask-programmably routed to one of the at least two groups of pads, thereby selecting the preferred interface for the semiconductor die. A non-preferred interface is not routed to any bumps on the active surface of the semiconductor die, thereby reducing bump count on the die. Each of the at least two groups of pads can be situated in a corresponding pad ring on the active surface of said semiconductor die. The at least two groups of pads can be laid out substantially inline.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 8, 2014
    Assignee: Broadcom Corporation
    Inventors: Tarek Kaylani, Zhihui Wang, Kenneth Kindsfater, Balasubramanian Annamalai, Jeff Echtenkamp
  • Patent number: 8772939
    Abstract: Polishing systems and methods for removing conductive material (e.g., noble metals) from microelectronic substrates are disclosed herein. Several embodiments of the methods include forming an aperture in a substrate material, disposing a conductive material on the substrate material and in the aperture, and disposing a fill material on the conductive material. The fill material at least partially fills the aperture. The substrate material is then polished to remove at least a portion of the conductive material and the fill material external to the aperture during which the fill material substantially prevents the conductive material from smearing into the aperture during polishing the substrate material.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: July 8, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Nishant Sinha
  • Patent number: 8772934
    Abstract: An aluminum interconnection apparatus comprises a metal structure formed over a substrate, wherein the metal structure is formed of a copper and aluminum alloy, a first alloy layer formed underneath the metal structure and a first barrier layer formed underneath the first alloy layer, wherein the first barrier layer is generated by a reaction between the first alloy layer and an adjacent dielectric layer during a thermal process.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: July 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Fu Yeh, Hsiang-Huan Lee
  • Patent number: 8766452
    Abstract: A semiconductor device having a conductive pattern includes a plurality of conductive lines extending in parallel, each having a first region extending in a first direction and a second region coupled to the first region and extending in a second direction crossing the first direction, and a plurality of contact pads, each coupled to a respective conductive line of the second regions, wherein the conductive lines are grouped and arranged in a plurality of groups, the first region of a first group is longer than the first region of a second group, and the second region of the first group and the second region of the second group are spaced apart from each other.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: July 1, 2014
    Assignee: SK Hynix Inc.
    Inventor: Dae Sung Eom
  • Patent number: 8766427
    Abstract: An RF-power device includes a semiconductor substrate having a plurality of active regions arranged in an array. Each active region includes one or more RF-power transistors. The active regions are interspersed with inactive regions for reducing mutual heating of the RF-power transistors in separate active regions. The devices also includes at least one impedance matching component located in one of the inactive regions of the substrate.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: July 1, 2014
    Assignee: NXP, B.V.
    Inventor: Marnix Bernard Willemsen
  • Patent number: 8766461
    Abstract: A flip chip mounting board includes a substrate having a top surface and a plurality of generally parallel, longitudinally extending, laterally spaced apart bond fingers are formed on the top surface. Each of the plurality of bond fingers has a first longitudinal end portion and a second longitudinal end portion. A first strip of laterally extending solder resist material overlies the first longitudinal end portions of the bond fingers. The first strip has an edge wall with a plurality of longitudinally projecting tooth portions separated by gaps with a longitudinally extending tooth portion being aligned with every other one of the bond fingers. Adjacent bond fingers have first end portions covered by different longitudinal lengths of solder resist material.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: July 1, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Raymond Partosa, Jesus Bajo Bautista, James Raymond Baello, Roxanna Bauzon Samson
  • Patent number: 8759978
    Abstract: In one embodiment, a chip-on-lead package structures includes an electronic chip having opposing major surfaces. One major surface of the electronic chip is attached to first and second leads. The one major surface is electrically connected to the first lead, and electrically isolated from the second lead. The other major surface where active device are formed may be electrically connected to the second lead.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: June 24, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Atapol Prajuckamol, Bih Wen Fon, Jun Keat Lee
  • Patent number: 8759979
    Abstract: A semiconductor memory device having a cell pattern formed on an interconnection and capable of reducing an interconnection resistance and a fabrication method thereof are provided. The semiconductor device includes a semiconductor substrate in which a cell area, a core area, and a peripheral area are defined and a bottom structure is formed, a conductive line formed on an entire structure of the semiconductor substrate, a memory cell pattern formed on the conductive line in the cell area, and a dummy conductive pattern formed on any one of the conductive line in the core area and the peripheral area.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: June 24, 2014
    Assignee: SK Hynix Inc.
    Inventor: Jang Uk Lee
  • Patent number: 8759984
    Abstract: A semiconductor memory device includes a first wiring region and a second wiring region located adjacent to the first wiring region. First lines located in the first wiring region include a first portion, a first lead portion and first inclined portion. Second lines located in the second wiring region include a second portion, a second lead portion and a second inclined portion. The first and second portions are located in parallel with a same pitch, the first and second lead portions are located with a pitch which is larger than the pitch of the first and second portions, the first and second inclined portions extend the same direction at a predetermined angle.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: June 24, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazuo Saito
  • Patent number: 8759980
    Abstract: Array contacts for semiconductor memories may be formed using a first set of parallel stripe masks and subsequently a second set of parallel stripe masks transverse to the first set. For example, one set of masks may be utilized to etch a dielectric layer, to form parallel spaced trenches. Then the trenches may be filled with a sacrificial material. That sacrificial material may then be masked transversely to its length and etched, for example. The resulting openings may be filled with a metal to form array contacts.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: June 24, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Roberto Somaschini, Alessandro Vaccaro, Paolo Tessariol, Giulio Albini
  • Patent number: 8753924
    Abstract: An article of manufacture includes a semiconductor die (110) having an integrated circuit (105) on a first side of the die (110), a diffusion barrier (125) on a second side of the die (110) opposite the first side, a mat of carbon nanotubes (112) rooted to the diffusion barrier (125), a die attach adhesive (115) forming an integral mass with the mat (112) of the carbon nanotubes, and a die pad (120) adhering to the die attach adhesive and (115) and the mat (112) of carbon nanotubes for at least some thermal transfer between the die (110) and the die pad (120) via the carbon nanotubes (112). Other articles, integrated circuit devices, structures, and processes of manufacture, and assembly processes are also disclosed.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: June 17, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: James Cooper Wainerdi, Luigi Colombo, John Paul Tellkamp, Robert Reid Doering
  • Patent number: 8754394
    Abstract: A variable resistive memory device includes a bit line, a word line, first electrodes and second electrodes, which are respectively arrayed in different directions, wherein a unit cell including a variable resistive material layer interposed between the first electrode and the second electrode is located at every intersection between the first electrode and the second electrode.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: June 17, 2014
    Assignee: SK Hynix Inc.
    Inventors: Jae-Yun Yi, Seok-Pyo Song
  • Patent number: 8742595
    Abstract: The present invention provides a MEMS structure comprising confined sacrificial oxide layer and a bonded Si layer. Polysilicon stack is used to fill aligned oxide openings and MEMS vias on the sacrificial layer and the bonded Si layer respectively. To increase the design flexibility, some conductive polysilicon layer can be further deployed underneath the bonded Si layer to form the functional sensing electrodes or wiring interconnects. The MEMS structure can be further bonded to a metallic layer on top of the Si layer and the polysilicon stack.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: June 3, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Bruce C. S. Chou
  • Patent number: 8742577
    Abstract: A semiconductor package includes a first semiconductor chip, a second semiconductor chip disposed on the first semiconductor chip, and a connection member to electrically connect the first semiconductor chip and the second semiconductor chip. The connection member may include a connection pad disposed on the first semiconductor chip, a connection pillar disposed on the second semiconductor chip, and a bonding member to connect the connection pad and the connection pillar. An anti-contact layer may be formed on at least one surface of the connection pad.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: June 3, 2014
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Young-kun Jee, Sun-kyoung Seo, Sang-wook Park, Ji-hwan Hwang
  • Publication number: 20140145236
    Abstract: A method of increasing a work function of an electrode is provided. The method comprises obtaining an electronegative species from a precursor using electromagnetic radiation and reacting a surface of the electrode with the electronegative species. An electrode comprising a functionalized substrate is also provided.
    Type: Application
    Filed: April 13, 2012
    Publication date: May 29, 2014
    Inventors: Michael Helander, Zhibin Wang, Jacky Qiu, Zheng-Hong Lu
  • Patent number: 8736048
    Abstract: A multi-chip module (MCM) structure comprises more than one semiconductor chip lying in a horizontal plane, the MCM having individual chip contact patches on the chips and a flexible heat sink having lateral compliance and extending in a plane in the MCM and secured in a heat exchange relation to the chips through the contact patches. The MCM has a mismatch between the coefficient of thermal expansion of the heat sink and the MCM and also has chip tilt and chip height mismatches. The flexible heat sink with lateral compliance minimizes or eliminates shear stress and shear strain developed in the horizontal direction at the interface between the heat sink and the chip contact patches by allowing for horizontal expansion and contraction of the heat sink relative to the MCM without moving the individual chip contact patches in a horizontal direction.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventor: Mark D. Schultz
  • Patent number: 8736002
    Abstract: The sensor assembly comprises a substrate (1), such as a flexible printed circuit board, and a sensor chip (2) flip-chip mounted to the substrate (1), with a first side (3) of the sensor chip (2) facing the substrate (1). A sensing area (4) and contact pads (5) are integrated on the first side (3) of the sensor chip (2). Underfill (18) and/or solder flux is arranged between the sensor chip (2) and the substrate (1). The sensor chip (2) extends over an edge (12) of the substrate (1), with the edge (12) of the substrate (1) extending between the contact pads (5) and the sensing area (4) over the whole sensor chip (2). A dam (16) can be provided along the edge (12) of the substrate (1) for even better separation of the underfill (18) and the sensing area (4). This de sign allows for a simple alignment of the sensor chip on the substrate (1) and prevents underfill (18) from covering the sensing area (4).
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: May 27, 2014
    Assignee: Sensirion AG
    Inventors: Markus Graf, Werner Hunziker, Franziska Brem, Felix Mayer
  • Patent number: 8729709
    Abstract: This invention provides a multi-pin semiconductor device as a low-cost flip-chip BGA. In the flip-chip BGA, a plurality of signal bonding electrodes in a peripheral area of the upper surface of a multilayer wiring substrate are separated into inner and outer ones and a plurality of signal through holes coupled to a plurality of signal wirings drawn inside are located between a plurality of rows of signal bonding electrodes and a central region where a plurality of bonding electrodes for core power supply are located so that the chip pad pitch can be decreased and the cost of the BGA can be reduced without an increase in the number of layers in the multilayer wiring substrate.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: May 20, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Shinji Baba, Toshihiro Iwasaki, Masaki Watanabe
  • Publication number: 20140131854
    Abstract: One aspect provides an integrated circuit (IC) multi-chip packaging assembly, comprising a first IC chip having packaging substrate contacts and bridging block contacts, a second IC chip having packaging substrate contacts and bridging block contacts, and a bridging block partially overlapping the first and second IC chips and having interconnected electrical contacts on opposing ends thereof that contact the bridging block contacts of the first IC chip and the second IC chip to thereby electrically connect the first IC chip to the second chip.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Applicant: LSI Corporation
    Inventors: Donald E. Hawk, John W. Osenbach, James C. Parker
  • Patent number: 8723301
    Abstract: A semiconductor package includes a package board, a pellet provided over the package board, and a protection member covering the package board and the pellet and including a hole penetrating the protection member.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: May 13, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Kou Sasaki
  • Patent number: 8723324
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a lead having a lead bottom side and a lead top side; applying a passivation over the lead with the lead top side exposed from the passivation; forming an interconnect structure directly on the passivation and the lead top side, the interconnect structure having an inner pad and an outer pad with a recess above the lead top side; mounting an integrated circuit over the inner pad and the passivation; and molding an encapsulation over the integrated circuit.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: May 13, 2014
    Assignee: Stats ChipPac Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Emmanuel Espiritu, Dioscoro A. Merilo
  • Publication number: 20140124899
    Abstract: A method of forming a wafer level packaged circuit device includes forming a device wafer, the device wafer including a first group of one or more material layers left remaining in a first region of a substrate of the device wafer; and forming a cap wafer configured to be attached to the device wafer, the cap wafer including a second group of one or more material layers left remaining in a second region of a substrate of the cap wafer; wherein a combined thickness of the first and second groups of one or more material layers defines an integrated bond gap control structure upon bonding of the device wafer and the cap wafer.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Applicant: RAYTHEON COMPANY
    Inventors: Roland Gooch, Buu Diep, Thomas Allan Kocian, Stephen H. Black, Adam M. Kennedy
  • Publication number: 20140124955
    Abstract: A semiconductor device includes a first package component and a second package component. The first package component has a first die formed on a first substrate. A second package component has a second die formed on a second substrate. A thermal isolation material is attached on the first die, wherein the thermal isolation material thermally insulates the second die from the first die, and the thermal isolation material has a thermal conductivity of from about 0.024 W/mK to about 0.2 W/mK. A first set of conductive elements couples the first package component to the second package component.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Inventors: Meng-Tse CHEN, Kuei-Wei HUANG, Tsai-Tsung TSAI, Ai-Tee ANG, Ming-Da CHENG, Chung-Shi LIU
  • Patent number: 8716859
    Abstract: A flip chip package structure is proposed in which a redistribution layer (RDL) is disposed on a surface of both a semiconductor chip and one or more lateral extensions of the semiconductor chip surface. The lateral extensions may be made using, e.g., a reconstituted wafer to implement a fanout region lateral to one or more sides of the semiconductor chip. One or more electrical connectors such as solder bumps or copper cylinders may be applied to the RDL, and an interposer such as a PCB interposer may be connected to the electrical connectors. In this way, a relatively tight semiconductor pad pitch may be accommodated and translated to an appropriate circuit board pitch without necessarily requiring a silicon or glass interposer.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 6, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Thorsten Meyer, Gerald Ofner, Bernd Waidhas
  • Patent number: 8716122
    Abstract: To provide: a technique capable of suppressing a titanium nitride film that is exposed at the side surface of an opening from turning into a titanium oxide film even when water permeates the opening over a pad from outside a semiconductor device and thus improving the reliability of the semiconductor device; and a technique capable of suppressing a crack from occurring in a surface protective film of a pad and improving the reliability of a semiconductor device. An opening is formed so that the diameter of the opening is smaller than the diameter of another opening and the opening is included in the other opening. Due to this, it is possible to cover the side surface of an antireflection film that is exposed at the side surface of the other opening with a surface protective film in which the opening is formed. As a result of this, it is possible to form a pad without exposing the side surface of the antireflection film.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: May 6, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Takuro Honma, Yoshifumi Takata
  • Publication number: 20140117546
    Abstract: The embodiments of diffusion barrier layer described above provide mechanisms for forming a copper diffusion barrier layer to prevent device degradation for hybrid bonding of wafers. The diffusion barrier layer(s) encircles the copper-containing conductive pads used for hybrid bonding. The diffusion barrier layer can be on one of the two bonding wafers or on both bonding wafers.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping-Yin LIU, Szu-Ying CHEN, Chen-Jong WANG, Chih-Hui HUANG, Xin-Hua HUANG, Lan-Lin CHAO, Yeur-Luen TU, Chia-Chiung TSAI, Xiaomeng CHEN
  • Publication number: 20140117545
    Abstract: A copper layer is formed without copper hillocks. Embodiments includes providing a copper layer above a substrate, planarizing the copper layer, performing hydrogen (H2) plasma treatment on the copper layer in a first chamber, and forming a barrier layer over the copper layer in a second chamber, different from the first chamber.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: GLOBALFOUNDRIES Singapore Pte. Ltd
    Inventors: Huang LIU, Xuesong Rao, Zheng Zou, Alex See, Lup San Leong, Liang Li, Chim Seng Seet
  • Publication number: 20140117509
    Abstract: Various techniques, methods and devices are disclosed where metal is deposited on a substrate, and stress caused by the metal to the substrate is limited, for example to limit a bending of the wafer.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Manfred Schneegans, Juergen Foerster, Bernhard Weidgans, Norbert Urbansky, Tilo Rotth
  • Publication number: 20140117529
    Abstract: Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Vishal Sipani, Kyle Armstrong, Michael D. Hyatt, Michael Dean Van Patten, David A. Kewley, Ming-Chuan Yang
  • Patent number: 8710667
    Abstract: A semiconductor device includes a first interconnect layer and a second interconnect layer provided above or under the first interconnect layer. The first interconnect layer includes a plurality of first interconnect blocks, and in each of the first interconnect blocks, a first interconnect has a first potential, and extends in at least two or more directions, and a second interconnect has a second potential, and extends in at least two or more directions. The second interconnect layer includes a third interconnect which electrically connects the first interconnect of one of a pair of adjacent first interconnect blocks and the first interconnect of the other of the pair of adjacent first interconnect blocks, and a fourth interconnect which electrically connects the second interconnect of one of the pair of adjacent first interconnect blocks and the second interconnect of the other of the pair of adjacent first interconnect blocks.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: April 29, 2014
    Assignee: Panasonic Corporation
    Inventors: Hiroshige Hirano, Yukitoshi Ota
  • Patent number: 8710655
    Abstract: A die package may include a package substrate; an interposer; and/or at least one first die connected between the package substrate and the interposer. The die package may further include at least one second die mounted on the interposer and/or a processor. A system may include a system board and/or a die package mounted on the system board. The die package may include a package substrate; an interposer; and/or at least one first die connected between the package substrate and the interposer. The system may further include at least one second die mounted on the interposer and/or a processor. The processor may control data processing operations of the at least one first die and/or the at least one second die.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Joong Kim, Jang Seok Choi, Chul-Hwan Choo
  • Patent number: 8710671
    Abstract: A multi-level integrated circuit, having a superposition of a first stack and a second stack of layers, and including a first row of electronic devices produced in the first stack, extending parallel to a first direction and fitting into a first volume with a substantially parallelepiped rectangle shape and having edges perpendicular to the first direction and with dimension H1; a second row of electronic devices produced in the second stack, extending parallel to the first direction and fitting into a second volume with a substantially parallelepiped rectangle shape and having edges perpendicular to the first direction and with dimension H2<H1; and a plurality of electrical connection elements passing through the second stack of layers, each connection element fitting into a third volume arranged on the first volume and next to the second volume.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 29, 2014
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Shashikanth Bobba, Olivier Thomas
  • Patent number: 8710677
    Abstract: A multi-chip package may include a package substrate, a first semiconductor chip, a second semiconductor chip and a supporting member. The first semiconductor chip may be arranged on an upper surface of the package substrate. The first semiconductor chip may be electrically connected with the package substrate. The second semiconductor chip may be arranged on an upper surface of the first semiconductor chip. The second semiconductor chip may be electrically connected with the first semiconductor chip. The second semiconductor chip may have a protrusion overhanging an area beyond a side surface of the first semiconductor chip. The supporting member may be interposed between the protrusion of the second semiconductor chip and the package substrate to prevent a deflection of the protrusion.
    Type: Grant
    Filed: August 4, 2012
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Jin Lee, Woo-Dong Lee
  • Patent number: 8710630
    Abstract: Mechanisms for identifying orientation of a sawed die are provided. By making metal pattern in the corner stress relief region in one corner of the die different from the other corners, users can easily identify the orientation of the die.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: April 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsien-Wei Chen
  • Patent number: 8710639
    Abstract: A wiring substrate in which a semiconductor element is built includes a semiconductor element; a peripheral insulating layer covering at least an outer circumferential side surface of this semiconductor element; and an upper surface-side wiring line provided on the upper surface side of the wiring substrate. The semiconductor element includes an internal terminal electrically connected to the upper surface-side wiring line on the upper surface side of the semiconductor element. This internal terminal includes a first conductive part exposed out of an insulating surface layer of the semiconductor element; an adhesion layer on this first conductive part; and a second conductive part on this adhesion layer.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: April 29, 2014
    Assignee: NEC Corporation
    Inventors: Katsumi Kikuchi, Shintaro Yamamichi, Hideya Murai, Kentaro Mori, Yoshiki Nakashima
  • Patent number: 8710652
    Abstract: An embedded package includes a semiconductor chip divided into a cell region and a peripheral region, having a first surface and a second surface which faces away from the first surface, and including an integrated circuit which is formed in the cell region on the first surface, a bonding pad which is formed in the peripheral region on the first surface and a bump which is formed over the bonding pad; a core layer attached to the second surface of the semiconductor chip; an insulation component formed over the core layer including the semiconductor chip and having an opening which exposes the bump; and a circuit wiring line formed over the insulation component and the bump and electrically connected to is the bump, wherein the insulation component formed in the cell region has a thickness larger than a height of the bump.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 29, 2014
    Assignee: SK Hynix Inc.
    Inventor: Qwan Ho Chung
  • Patent number: 8710660
    Abstract: A device includes a first low-k dielectric layer, and a copper-containing via in the first low-k dielectric layer. The device further includes a second low-k dielectric layer over the first low-k dielectric layer, and an aluminum-containing metal line over and electrically coupled to the copper-containing via. The aluminum-containing metal line is in the second low-k dielectric layer.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: April 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Tien-I Bao
  • Patent number: 8710644
    Abstract: A semiconductor unit of certain aspects of the invention includes electrically conductive plates in the shape of the letter L, each consisting of a horizontally disposed leg portion and a vertically disposed flat body portion that is perpendicular to a cooling plate adhered to the bottom of the semiconductor unit. A pair of the vertically disposed flat body portions sandwiches a semiconductor chip. Owing to this construction, the heat generated in the semiconductor chip can be conducted away through the both surfaces of the chip, thus improving cooling performance. Since the heat is conducted away through the leg portions of the L-shaped electrically conductive plates a projected planar area occupied by the cooling plate required for cooling the semiconductor unit is reduced. Therefore, the size of the semiconductor unit can be reduced.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: April 29, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Kenichiro Sato
  • Patent number: 8710681
    Abstract: A device includes a first package component, and a second package component underlying, and bonded to, the first package component. A molding material is disposed under the first package component and molded to the first and the second package components, wherein the molding material and the first package component form an interface. An isolation region includes a first edge, wherein the first edge of the isolation region contacts a first edge of the first package component and a first edge of the molding material. The isolation has a bottom lower than the interface.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: April 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Horng Chang, Tin-Hao Kuo, Tsung-Fu Tsai, Min-Feng Ku
  • Publication number: 20140110848
    Abstract: Provided among other things is an electrical device comprising: a first component that is a semiconductor or an electrical conductor; a second component that is an electrical conductor; and a strong, heat stable junction there between including an intermetallic bond formed of: substantially (a) indium (In), tin (Sn) or a mixture thereof, and (b) substantially nickel (Ni). The junction can have an electrical contact resistance that is small compared to the resistance of the electrical device.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Applicant: U.S. ARMY RESEARCH LABORATORY ATTN: RDRL-LOC-I
    Inventors: Patrick J. Taylor, Sudhir Trivedi, Wendy L. Sarney
  • Publication number: 20140110838
    Abstract: Various embodiments provide a semiconductor device, including a final metal layer having a top side and at least one sidewall; and a passivation layer disposed over at least part of at least one of the top side and the at least one sidewall of the final metal layer; wherein the passivation layer has a substantially uniform thickness.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Michael Rogalli, Wolfgang Lehnert
  • Patent number: 8704377
    Abstract: An electrical interconnect providing an interconnect between contacts on an IC device and contact pads on a printed circuit board (PCB). The electrical interconnect includes a resilient substrate with a plurality of through holes extending from a first surface to a second surface. A resilient material is located in the through holes. The resilient material includes an opening extending from the first surface to the second surface. A plurality of discrete, free-flowing conductive nano-particles are located in the openings of the resilient material. The conductive particles are substantially free of non-conductive materials. A plurality of first contact members are located in the through holes adjacent the first surface and a plurality of second contact members are located in the through holes adjacent the second surface. The first and second contact members are electrically coupled to the nano-particles.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: April 22, 2014
    Assignee: HSIO Technologies, LLC
    Inventor: James Rathburn
  • Patent number: 8704339
    Abstract: A semiconductor device comprises a first external terminal having a first size, a plurality of second external terminals each having a second size smaller than the first size, an external terminal area in which the first external terminal and the second external terminals are arranged, and a plurality of wires connecting between the second external terminals and a plurality of circuits formed adjacent to the external terminal area and corresponding to the second external terminals. The second external terminals and the wires constitute a plurality of interfaces. Each of the interfaces includes at least one adjustment portion that adjusts a time constant of the wire so that the wires have the same time constant. At least part of the adjustment portions is located in a margin area produced in the external terminal area by a difference between the first size and the second size.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: April 22, 2014
    Inventors: Tomohiro Kitano, Hisayuki Nagamine
  • Patent number: 8704384
    Abstract: A stacked die assembly for an IC includes a first interposer; a second interposer; a first integrated circuit die, a second integrated circuit die, and a plurality of components. The first integrated circuit die is interconnected to the first interposer and the second interposer, and the second integrated circuit die is interconnected to the second interposer. The plurality of components interconnect the first integrated circuit die to the first interposer and the second interposer. The plurality of components that interconnect the first integrated circuit die to the first interposer and the second interposer are located outside an interconnect restricted area of the first interposer and the second interposer, and signals are routed between the first integrated circuit die and the second integrated circuit die via the first integrated circuit die avoiding the interconnect restricted area of the first interposer and the second interposer.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: April 22, 2014
    Assignee: Xilinx, Inc.
    Inventors: Ephrem C. Wu, Raghunandan Chaware
  • Patent number: 8698324
    Abstract: The present invention provides a dicing tape-integrated film for semiconductor back surface, which includes: a dicing tape including a base material and a pressure-sensitive adhesive layer provided on the base material; and a film for flip chip type semiconductor back surface provided on the pressure-sensitive adhesive layer, in which the film for flip chip type semiconductor back surface contains a black pigment.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 15, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Naohide Takamoto, Takeshi Matsumura, Goji Shiga
  • Patent number: 8692284
    Abstract: An embodiment of the present invention provides a manufacturing method of an interposer including: providing a semiconductor substrate having a first surface, a second surface and at least a through hole connecting the first surface to the second surface; electrocoating a polymer layer on the first surface, the second surface and an inner wall of the through hole; and forming a wiring layer on the electrocoating polymer layer, wherein the wiring layer extends from the first surface to the second surface via the inner wall of the through hole. Another embodiment of the present invention provides an interposer.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: April 8, 2014
    Inventors: Ying-Nan Wen, Chien-Hung Liu, Wei-Chung Yang