Copper Base Patents (Class 420/469)
  • Publication number: 20010035237
    Abstract: A physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A physical vapor deposition target includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.
    Type: Application
    Filed: February 14, 2001
    Publication date: November 1, 2001
    Inventors: Shozo Nagano, Hinrich Hargarter, Jianxing Li, Jane Buehler
  • Publication number: 20010035238
    Abstract: A physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a physical vapor deposition target includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A physical vapor deposition target includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.001 at %. In one implementation, a conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from less than 1.0 at % to 0.001 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and silver, with the silver being present in the alloy at from 50 at % to 70 at %. A conductive integrated circuit metal alloy interconnection includes an alloy of copper and tin, with tin being present in the alloy at from less than 1.0 at % to 0.
    Type: Application
    Filed: February 14, 2001
    Publication date: November 1, 2001
    Inventors: Shozo Nagano, Hinrich Hargarter, Jianxing Li, Jane Buehler
  • Publication number: 20010014407
    Abstract: An object of the invention is to provide a surface-treated copper foil capable of consistently attaining a percent loss in peel strength against hydrochloric acid degradation of 10% or less as measured on a copper pattern prepared from the copper foil and having a line width of 0.2 mm, by bringing out the maximum effect of the silane coupling agent employed in zinc-plated or zinc-alloy-plated anti-corrosive copper foil. Another object is to impart excellent moisture resistance, heat resistance, and long-term storage stability to the surface-treated copper foil.
    Type: Application
    Filed: January 26, 2001
    Publication date: August 16, 2001
    Applicant: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Masakazu Mitsuhashi, Takashi Kataoka, Naotomi Takahashi
  • Patent number: 6197433
    Abstract: A rolled copper foil for flexible printed circuits contains not more than 10 ppm by weight of oxygen and has a softening-temperature rise index T defined as T=0.60[Bi]+0.55[Pb]+0.60[Sb]+0.64 [Se]+1.36[S]+0.32[As]+0.09[Fe]+0.02[Ni]+0.76[Te]+0.48[Sn]+0.16[Ag]+1.24[P] (each symbol in the brackets representing the concentration in ppm by weight of the element) in the range of 4 to 34. The concentrations of the elements are in the ranges of[Bi]<5, [Pb]<10, [Sb]<5, [Se]<5, [S]<15, [As]<5, [Fe]<20, [Ni]<20, [Te]<5, [Sn]<20, [Ag]<50, and [P]<15 (each symbol in the brackets representing the concentration in ppm by weight of the element).
    Type: Grant
    Filed: January 12, 2000
    Date of Patent: March 6, 2001
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventor: Takaaki Hatano
  • Patent number: 6187071
    Abstract: A bond for a single layer metal bond abrasive tool can be easily chemically and electrochemically stripped from the metal core of a recovered used tool to facilitate reuse of the core. Relative to conventionally bonded tools, the speed of stripping the novel bond is quick, and the stripped core has a smooth, clean surface which needs only minimal mechanical repair prior to reuse. In one aspect, the novel bond is a quaternary bond composition consisting essentially of copper, tin, titanium and silver. The powder components can be used dry or mixed with a fugitive liquid binder as a paste. The novel bond can be brazed at lower temperature than copper/tin/titanium bonds prepared otherwise. The bond composition forms a good melt at braze temperature that flows smoothly, evenly over a tool preform and provides consistent quality bonding of abrasive from tool to tool.
    Type: Grant
    Filed: January 14, 1999
    Date of Patent: February 13, 2001
    Assignee: Norton Company
    Inventors: Richard M. Andrews, Bradley J. Miller, Marcus R. Skeem, Ren-Kae Shiue
  • Patent number: 6174344
    Abstract: Copper fine powder has an electrical resistance in its powdery state of not more than 1×10−3&OHgr;.cm; a BET specific surface area ranging from 0.15 to 0.3 m2/g; a tap density of not less than 4.5 g/cc; a product of the tap density and the particle size, of not less than 13, the particle size being calculated from the specific surface area and a particle size distribution observed in the microtrack measurement as expressed in terms of D50 and D90 ranging from 4 to 7 &mgr;m and 9 to 11 &mgr;m, respectively; and a weight loss through hydrogen-reduction of not more than 0.30%. The copper fine powder is prepared by adding an alkali hydroxide to an aqueous copper salt solution containing divalent copper ions maintained at not less than 55° C. in an amount of not less than the chemical equivalent to form cupric oxide; then gradually adding a reducing sugar to the reaction system while maintaining the temperature of the system to not less than 55° C.
    Type: Grant
    Filed: June 2, 1998
    Date of Patent: January 16, 2001
    Assignee: Mitsui Mining and Smelting Co., Ltd.
    Inventors: Takao Hayashi, Yoshinobu Nakamura, Hiroyuki Shimamura
  • Patent number: 6149739
    Abstract: An improved white manganese bronze alloy containing, in weight percent, about 1.0-3.0 wt % aluminum, about 2.0-4.0 wt % bismuth, about 53-59 wt % copper, about 0.8-2.0 wt % iron, about 11-15 wt % manganese, about 5.0-7.0 wt % nickel, about 1.3-2.5 wt % tin, and about 18-24 wt % zinc, as well as incidental amounts of antimony, lead, phosphorus, silicon and sulfur, which is able to withstand vigorous cleaning and disinfection, and is not subject to galling.
    Type: Grant
    Filed: March 6, 1997
    Date of Patent: November 21, 2000
    Assignee: G & W Electric Company
    Inventor: Geary Robert Smith
  • Patent number: 6093499
    Abstract: Copper alloy foils are provided having far greater strength and heat resistance than conventional copper foils, and having better productivity, are characterized by a composition comprising, all by weight, from 0.01 to 0.4% Cr, from 0.01 to 0.25% Zr, from 0.02 to 2.0% Zn; and when necessary from 0.05 to 1.8% Fe and from 0.05 to 0.8% Ti; and when further necessary one or more elements selected from the group consisting of Ni, Sn, In, Mn, P, Mg, Al, B, As, Cd, Co, Te, Ag, and Hf in a total amount of from 0.005 to 1.5%; the balance being copper and unavoidable impurities. Inclusions in the copper foil not larger than 10 .mu.m in size, and the inclusions between 0.5 and 10 .mu.m in size number less than 100 pieces/mm.sup.2.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: July 25, 2000
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventor: Yasuo Tomioka
  • Patent number: 6063506
    Abstract: Copper alloys containing between 0.01 and 10 weight percent of at least one alloying element selected from carbon, indium and tin for improved electromigration resistance, low resistivity and good corrosion resistance that can be used in chip and package interconnections and a method of making such interconnections and conductors by first forming the copper alloy and then annealing it to cause the diffusion of the alloying element toward the grain boundaries between the grains in the alloy are disclosed.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: May 16, 2000
    Assignee: International Business Machines Corporation
    Inventors: Panayotis Constantinou Andricacos, Hariklia Deligianni, James McKell Edwin Harper, Chao-Kun Hu, Dale Jonathan Pearson, Scott Kevin Reynolds, King-Ning Tu, Cyprian Emeka Uzoh
  • Patent number: 6037067
    Abstract: A laminate material comprising a metal substrate and a laser overlaid layer of a high temperature abrasion resistant copper alloy suitable for the material of engine parts such as valve seats and valve guides, wherein the copper alloy consists essentially of aluminum in an amount ranging from 1.0 to 15.0% by weight; at least one element selected from the group consisting of vanadium, niobium and tantalum in the group VB of the periodic table of elements, in an amount ranging from 0.1 to 5.0% by weight; and balance containing copper and impurities. The copper alloy has a structure in which at least one of intermetallic compounds is dispersed, each intermetallic compound contains at least one metal selected from the group consisting of aluminum and copper and at least one element selected from the group consisting of elements of the group VB of the periodic table. This copper alloy exhibits also high oxidation resistance and corrosion resistance at high temperatures.
    Type: Grant
    Filed: March 5, 1996
    Date of Patent: March 14, 2000
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akira Fujiki, Makoto Kano
  • Patent number: 5955176
    Abstract: A slider suspension system for use in a magnetic recording disk file comprised of a laminated suspension positioned between an actuator arm and a read/write slider. The laminated suspension is comprised of a conductor layer, a dielectric layer and a support layer. The conductor layer is comprised of a high strength conductive copper alloy selected from the group consisting of Cu--Ni--Si--Mg alloy, Be--Cu--Ni alloy, and Cu--Ti alloy, wherein the conductive layer has a thickness less than or equal to eighteen microns. The dielectric layer is comprised of an electrically insulating material such as a polyimide. The support layer is comprised of a rigid material such as stainless steel.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: September 21, 1999
    Assignee: International Business Machines Corporation
    Inventors: A. David Erpelding, Darrell D. Palmer, Surya Pattanaik, Oscar J. Ruiz
  • Patent number: 5865910
    Abstract: Copper base alloys consisting essentially of 1.0 to 4.0% tin, 0.01 to 0.20% phosphorous, 0.01 to 0.80% iron, 0.1 to 12.0% zinc and the balance essentially copper, including phosphide particles uniformly distributed throughout the matrix. The alloy is characterized by an excellent combination of physical properties. The process of the present invention includes homogenizing, rolling, process annealing and stress relief annealing.
    Type: Grant
    Filed: November 7, 1996
    Date of Patent: February 2, 1999
    Assignee: Waterbury Rolling Mills, Inc.
    Inventor: Ashok K. Bhargava
  • Patent number: 5858125
    Abstract: A magnetoresistive material of the present invention has a structure in which many clusters are surrounded by a crystal phase of Cu and/or Ag, where each cluster has a grain size of 20 nm or less and composed of an amorphous phase containing at least one ferromagnetic metal element T as a main component selected from Fe, Co and Ni, and at least one element M selected from Ti, Zr, Hf, V, Nb, Ta, Mo and W.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: January 12, 1999
    Assignee: Alps Electric Co., Ltd.
    Inventor: Naoya Hasegawa
  • Patent number: 5675883
    Abstract: The invention relates to a method of manufacturing a copper-nickel-silicon alloy with a composition Cu (balance), Ni 1.5-5.5%, Si 0.2-1.05, Fe 0-0.5% and Mg 0-0.1% (all in percent by weight), and use of the alloy for pressure-englazable casings. The method permits an alloy with a very high elastic limit with very good conductivity and good cold reformability and differs from the conventional method of manufacturing such alloys by heating to about 950.degree. C. and fairly rapid cooling after a preceding cold rolling operation. An improvement in the properties can be achieved by ageing of the alloy at 300.degree. C. to 600.degree. C. for several hours.
    Type: Grant
    Filed: April 26, 1995
    Date of Patent: October 14, 1997
    Assignee: Diehl GmbH & Co.
    Inventors: Norbert Gaag, Peter Ruchel
  • Patent number: 5667751
    Abstract: This invention relates to a catalytic fuel composition capable of reducing pollutants in the combustion gasses generated upon combustion of the same. A catalytic material is combined with a liquid, petroleum-based fuel, mixed and solid particles are separated out to give the catalytic fuel product. The catalytic material predominantly comprises a plagioclase feldspar belonging mainly to the albite-anorthite series, and contains small amount of mica, kaolinite and serpentine, and optionally contains magnetite. An alloy material is also disclosed, comprising a mixture of the above-described catalytic material and a metal. The alloy material exhibits unique properties relative to the metal component alone, such as increased tensile strength, improved heat resistance, improved acid resistance, improved corrosion resistance, as well as exhibiting unusual conductive properties.
    Type: Grant
    Filed: July 17, 1996
    Date of Patent: September 16, 1997
    Inventor: Jack H. Taylor, Jr.
  • Patent number: 5578266
    Abstract: Disclosed are a hydrogen storage alloy which contains carbon in a proportion of from 30 to 500 ppm and is represented by the stoichiometric formula A.sub.x B.sub.5.0, wherein A is La or a mixture of La with at least one rare earth metal other than La, B is at least one metal selected from a group consisting of Al, Co, Cr, Cu, Fe, Mn, Ni, Ti, V, Zn and Zr, and x is a rational number in the range 0.95.ltoreq..times..ltoreq.1.00; and has a texture in which only the intermetallic compound phase named AB.sub.5 phase is present and every other intermetallic compound phase is absent: and a method of producing said alloy and an electrode using the same.
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: November 26, 1996
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yasushi Takai, Kazuhiro Yamada, Takashi Toide, Shigenobu Tajima
  • Patent number: 5523022
    Abstract: Novel compound semiconductors are of the general formula, X.sub.5 YZ.sub.4, wherein X is a member selected from the group consisting of Cu, Ag and mixtures thereof, Y is a member selected from the group consisting of Al Ga, Tl and mixtures thereof, and Z is a member selected from the group consisting of Se, S, Te and mixtures thereof. Typical of the compound semiconductors are Cu.sub.5 AlSe.sub.4 and Ag.sub.5 AlSe.sub.4. These compound semiconductors are especially useful for making blue to UV light-emitting devices which include n-type and p-type compound semiconductor layers made of the above compound semiconductors.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: June 4, 1996
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Yoshio Morita
  • Patent number: 5516484
    Abstract: A copper-nickel based alloy, having reduced break-out during casting and reduced cracking during processing in solid state, which consists essentially of 3.1 to 25 wt. % of Ni, 0.1 to 1.5 wt. % of Mn, 0.0001 to 0.0093 wt. % of B, 0.01 to 0.7 wt. % of Si, and from 3 to 10 wt. % of Sn and the remainder being Cu and unavoidable elements.
    Type: Grant
    Filed: February 7, 1995
    Date of Patent: May 14, 1996
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Kubosono, Iwao Asamizu, Masazumi Iwase, Toshihiro Kurita
  • Patent number: 5463247
    Abstract: There is provided a lead frame material formed of a Cu alloy for a resin sealed type semiconductor device, wherein the Cu alloy consists essentially of 2 to 4% Ni, more than 0.5 to 1%, Si, 0.1 to 2% Zn, more than 0.01 to 0.05%, Mg, 0.05 to 1% Sn, and the balance of Cu and inevitable impurities, the inevitable impurities containing 20 ppm or less sulfur (S) and 20 ppm or less carbon (C). The lead frame material formed of the Cu alloy has improved adhesion strength to an epoxy resin as a sealing material. A semiconductor device prepared from said lead frame material is also provided.
    Type: Grant
    Filed: February 15, 1994
    Date of Patent: October 31, 1995
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Rensei Futatsuka, Shunichi Chiba, Junichi Kumagai
  • Patent number: 5443615
    Abstract: A method of producing a molded ceramic article comprises the first step mixing powdery raw materials and a liquid additive, thereby obtaining a mixed raw material, the second step press-molding the mixed raw material obtained in the first step in a hydrostatically applied condition of pressure, thereby removing an excess of the liquid additive to obtain a preform, and the third step calcining the preform obtained in the second step to obtain a molded ceramic article. The molded ceramic article comprises, as a principal component, copper and, as essential components, Cr and Ni within composition ranges of 0.1.ltoreq.Cr<2 wt. % and 0.1.ltoreq.Ni<10 wt. % and further at least one additive component selected from the group consisting of the following composition ratios: the following composition ratios: 0<Fe<5 wt. %, 0.ltoreq.Co<5 wt. %, 0.ltoreq.Al<10 wt. % 0.ltoreq.Ti<20 wt. %, 0.ltoreq.Mo<3 wt. %, 0.ltoreq.Si<3 wt. % 0.ltoreq.V<3 wt. % 0.ltoreq.Mg<1 wt. % and 0.ltoreq.
    Type: Grant
    Filed: October 22, 1992
    Date of Patent: August 22, 1995
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Mitsuo Kuwabara, Kiyoshi Ikegami, Teruaki Yoshida, Koji Takahashi, Tamotsu Harada, Takeshi Komiyama, Fumio Hirai, Masamichi Hayashi
  • Patent number: 5441696
    Abstract: A copper-nickel based alloy, which comprises 3 to 25 wt % of Ni, 0.1 to 1.5 t % of Mn, 0.0001 to 0.01 wt % of B and the rest being Cu and an unavoidable element.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: August 15, 1995
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Kubosono, Iwao Asamizu, Masazumi Iwase, Toshihiro Kurita
  • Patent number: 5409520
    Abstract: This invention is to offer a copper powder for solderable and conductive paints which have an improved solderability, excellent adhesion and conductivity.A copper powder for solderable and conductive paints comprising particles of green caterpillar shape is obtained by crushing particulate dendritic copper powder, and has an oil absorption value (JIS K5101) of up to 20 ml/100 g, a maximum particle diameter of up to 44 .mu.m, an average particle diameter of up to 10 .mu.m, and a hydrogen-reduction loss of up to 0.5%. A process for producing this copper powder for solderable and conductive paints comprises: preparing a copper powder comprising particles of a green caterpillar shape having an average particle diameter of up to 10 .mu.m by crushing dendritic copper powder having a maximum diameter of up to 44 .mu.
    Type: Grant
    Filed: November 19, 1993
    Date of Patent: April 25, 1995
    Assignee: Mitsui Kinzoku Kogyo Kabushiki Kaisha
    Inventors: Seiji Mori, Kanetaro Sannohe
  • Patent number: 5403376
    Abstract: Electrical conductors on printed circuit board substrates are made from metal particles having a particular particle size range distribution used to control the flow of molten metal when entering the liquid phase such as during fusing. The distribution can follow a bimodal curve wherein the mixture contains approximately 45% by weight of large copper particles between 44-74 microns, 45% by weight of small copper particles less than 5 microns in size with the remaining 10% by weight being particles with sizes between the smaller and larger sizes.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: April 4, 1995
    Assignee: Printron, Inc.
    Inventors: Gerald A. DeVolk, Burt DeVolk
  • Patent number: 5330592
    Abstract: The present invention relates to novel compounds that exhibit unusually low electrical resistivity at room temperature. More specifically, it has been discovered that the incorporation of at least 1 to 15 atomic percent of gallium and/or at least 1 to 15 atomic percent gold into stoichiometric copper germanide (Cu.sub.3 Ge) compound results in a room temperature resistivity comparable to elemental copper, but with superior chemical and electronic stability upon exposure to air or oxygen at high temperatures. Furthermore, the compounds of the present invention have none of the problems associated with the diffusion of copper into elemental and compound semiconductors which oftentimes lead to the degradation of the semiconductor device characteristics. Additionally, the present invention relates to a method of preparing the novel compounds mentioned previously hereinabove.
    Type: Grant
    Filed: November 8, 1993
    Date of Patent: July 19, 1994
    Assignee: International Business Machines Corporation
    Inventors: Mohamed O. Aboelfotoh, Michael J. Brady, Lia Krusin-Elbaum
  • Patent number: 5288456
    Abstract: The present invention relates to novel compounds that exhibit unusually low electrical resistivity at room temperature. More specifically, it has been discovered that the incorporation of at least 1 to 15 atomic percent of gallium and/or at least 1 to 15 atomic percent gold into stoichiometric copper germanide (Cu.sub.3 Ge) compound results in a room temperature resistivity comparable to elemental copper, but with superior chemical and electronic stability upon exposure to air or oxygen at high temperatures. Furthermore, the compounds of the present invention have none of the problems associated with the diffusion of copper into elemental and compound semiconductors which oftentimes lead to the degradation of the semiconductor device characteristics. Additionally, the present invention relates to a method of preparing the novel compounds mentioned previously hereinabove.
    Type: Grant
    Filed: February 23, 1993
    Date of Patent: February 22, 1994
    Assignee: International Business Machines Corporation
    Inventors: Mohamed O. Aboelfotoh, Michael J. Brady, Lia Krusin-Elbaum
  • Patent number: 5205878
    Abstract: Electric and electronic parts, including leadframes made of a copper-based alloy having high strength and high electric conductivity said copper-based alloy is produced by a process which comprises the steps of preparing a copper-based alloy consisting essentially of 0.01-3.0 wt % Co and 0.01-0.5 wt % P with the balance being Cu and incidental impurities, quenching said alloy from a temperature not lower than 750.degree. C. down to 450.degree. C. and below at a cooling rate of at least 1.degree. C./sec, heat treating the quenched alloy at a temperature of 480.degree.-600.degree. C. for 30-600 minutes, cold working said alloy for a working ratio of 20-80%, further heat treating the alloy at a temperature of 440.degree.-470.degree. C. for 30-600 minutes, and subsequently performing cold working for a working ratio of at least 50% and heat treatment at 380.degree. C. and below. The electric and electronic parts preferably contain a plurality of conductive leads.
    Type: Grant
    Filed: December 16, 1991
    Date of Patent: April 27, 1993
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Toshihiro Kanzaki, Akira Sugawara, Isamu Amatsu, Kouichi Hatakeyama
  • Patent number: 5188799
    Abstract: A wear-resistant copper-base alloy having superior self-lubricity includes, by weight %,Ni: 10.0 to 30.0%;Si: 0.5 to 3%;Co: 2.0 to 15.0%;at least one metal selected from the group consisting of Mo, W, Nb and V:2.0 to 15.0%; andthe balance being Cu and unavoidable impurities, and having a structure in which hard phase grains containing 5 vol% or more of silicide of at least one metal selected from the group consisting of Mo, W, Nb and V are uniformly dispersed in an amount of 10 to 60 vol% in a copper-rich matrix, to which 2.0 to 15.0% of Fe and/or 1.0 to 10.0% of Cr may be further added.
    Type: Grant
    Filed: March 19, 1992
    Date of Patent: February 23, 1993
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Kazuhiko Mori, Minoru Kawasaki, Shin Yoshida, Hiroyuki Murase, Takashi Saito, Kouji Tanaka, Yoshio Shimura
  • Patent number: 5131958
    Abstract: A method of hot forming beryllium-copper alloy including from 1.60 to 2.00% by weight of Be, from 0.2 to 0.35% by weight of Co and the balance being essentially Cu, under specified conditions of a working temperature, a working rate, and an amount of work strain to produce a hot formed product of an equiaxed grain structure having a uniform stable grain size.
    Type: Grant
    Filed: March 15, 1990
    Date of Patent: July 21, 1992
    Assignee: NGK Insulators, Ltd.
    Inventors: Taku Sakai, Takaharu Iwadachi, Naokuni Muramatsu
  • Patent number: 5118470
    Abstract: A fine copper wire for electronic instruments is disclosed which comprises 0.05 to 10 ppm in total amount of either one or not less than two kinds of Ti, Zr, V, Hf, Cr, Ca, Mg, Y and rare-earth elements, 1 to 30 ppm pf oxygen and the remainder of Cu. A method of manufacturing therefor is described wherein the hot rolling is given to the ingot obtained by melting and casting in a nonoxidative atmosphere or in vacuum, then stretch processing and at least once or more times of intermediate annealing are repeated to finish to a fixed diameter of wire, and thereafter annealing is carried out under nonoxidative or reducible atmosphere to obtain desired mechanical characteristics.
    Type: Grant
    Filed: October 29, 1990
    Date of Patent: June 2, 1992
    Assignees: The Furukawa Electric Co., Ltd., Furukawa Special Metal Co., Ltd.
    Inventors: Toru Tanigawa, Masaaki Kurihara, Yasuji Fujii, Toshiaki Inaba
  • Patent number: 5102620
    Abstract: Spray cast alloys having reduced porosity and increased ductility are provided as well as a process for the manufacture of the alloys. An effective amount of a reactive metal which reacts with the spray casting atmosphere but not with the desired alloy is dissolved into the alloy prior to spray casting. Preferred reactive metals readily form a nitride which is finely dispersed throughout the spray cast alloy.
    Type: Grant
    Filed: June 1, 1990
    Date of Patent: April 7, 1992
    Assignee: Olin Corporation
    Inventors: William G. Watson, Sankaranarayanan Ashok, Harvey P. Cheskis
  • Patent number: 5077005
    Abstract: There is provided a high-conductivity copper alloy with excellent workability and heat resistance, characterized by the alloy consists essentially of, by weight, at least one element selected from the group consisting of______________________________________ 10-100 ppm In (indium), 10-1000 ppm Ag (silver), 10-300 ppm Cd (cadmium), 10-50 ppm Sn (tin), 10-50 ppm Sb (antimony), 3-30 ppm Pb (lead), 3-30 ppm Bi (bismuth), 3-30 ppm Zr (zirconium), 3-50 ppm Ti (titanium) and 3-30 ppm Hf (hafnium), ______________________________________and the balance copper. S (sulfur) and O (oxygen) as unavoidable impurities are controlled to amounts of less than 3 ppm S, and less than 5 ppm O, respectively. Other unavoidable impurities are controlled to less than 3 ppm in total amount. The alloy is very suitable for applications such as forming magnet wires and other very thin wires, lead wires for electronic components, lead members for tape automated bonding (TAB) and the like, and members for printed-circuit boards.
    Type: Grant
    Filed: February 27, 1990
    Date of Patent: December 31, 1991
    Assignee: Nippon Mining Co., Ltd.
    Inventor: Masanori Kato
  • Patent number: 5039478
    Abstract: A method for the manufacture of copper base alloys having improved resistance to thermally induced softening is provided. The alloy composition is selected so that the alloy undergoes either a peritectic or eutectic transformation during cooling. The solidification rate is controlled so that the second phase forms as a uniform dispersion of a relatively small dispersoid. The dispersoid inhibits recrystallization resulting in an alloy less susceptible to softening at elevated temperatures.
    Type: Grant
    Filed: October 22, 1990
    Date of Patent: August 13, 1991
    Assignee: Olin Corporation
    Inventor: Ashok Sankaranarayanan
  • Patent number: 4990820
    Abstract: Sockets for receiving metal lamp bases of electric lamps which contain metal parts fabricated from certain relatively high copper and low zinc content copper alloys are resistant to corrosion and to corrosion cracking in corrosive environments.
    Type: Grant
    Filed: December 7, 1989
    Date of Patent: February 5, 1991
    Assignee: General Electric Company
    Inventors: Albert L. Suster, Rolf S. Bergman
  • Patent number: 4981514
    Abstract: There are provided an apparatus and a method for manufacturing a copper-base alloy. The apparatus includes an alloying spout, at least one feeder and a tundish. The tundish is inclined downwardly from one end toward the other end for flowing a molten copper therethrough. The feeder is connected to the alloying spout for introducing at least one solid solute constituent into the alloying spout. The method includes the steps of providing the above apparatus, continuously introducing the molten copper from the inlet into the passageway of the alloying spout and causing the molten copper to flow downwardly through the passageway to the outlet, and continuously introducing the solid state constituent into the passageway of the alloying spout through the feeder to mix the solute constituent with the molten copper to produce the copper-base alloy.
    Type: Grant
    Filed: July 24, 1989
    Date of Patent: January 1, 1991
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Izumi Sukekawa, Haruhiko Asao, Hiroshi Kohno, Yukio Sugawara, Keiji Nogami
  • Patent number: 4976792
    Abstract: An electric conductor for video and audio appliances and a method of manufacturing the electric conductor. The electric conductor is constituted by a linear member made of copper or silver, which is composed of an assembly of segments each regarded substantially as single crystal having a length not less than twice a diameter of the single crystal. The method includes the steps of curing molten copper or molten silver into an ingot in a single direction along a longitudinal direction of the ingot and subjecting the ingot to cold working or warm working.
    Type: Grant
    Filed: October 25, 1989
    Date of Patent: December 11, 1990
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Kazuo Sawada
  • Patent number: 4946520
    Abstract: Copper rod has an improved surface smoothness and substantially no surface oxides, which rod is suitable for drawing or rolling into wire. The copper rod is produced by a process which comprises the steps of forming a bath of molten pure copper, casting the molten copper into a cast bar, conditioning the bar for hot-rolling, hot-rolling the bar to form a hot-rolled rod, cooling the hot-rolled rod and chemically shaving and pickling the hot-rolled rod. The chemical shaving and pickling step is performed with a solution containing controlled concentrations of sulfuric acid and hydrogen peroxide. Both the solution and the rod are maintained at elevated temperatures and the duration of the reaction is controlled. The interrelated process variables are regulated so that substantially all of the surface oxides and a desired amount of copper are removed from the surface of the hot-rolled rod.
    Type: Grant
    Filed: June 29, 1988
    Date of Patent: August 7, 1990
    Assignee: Phelps Dodge Industries, Inc.
    Inventors: Benjamin A. Escobar, Jr., Lester J. Wahner, Gilbert Montes, John T. Farraro
  • Patent number: 4944797
    Abstract: A powder material and a process for producing same are disclosed. The process comprises reducing the size of an electrolytically produced starting dendritic copper powder material by fluid energy milling to produce a finer powder, essentially all of which has a particle size of less than about 20 micrometers in diameter, entraining the finer powder in a carrier gas and passing it through a high temperature zone at a temperature above the melting point of the finer powder, the temperature being from about 5500.degree. C. to about 17,000.degree. C., to melt at least about 50% by weight of the finer powder to form essentially fine spherical particles of the melted portion, and rapidly and directly resolidifying the resulting high temperature treated material while the material is in flight, to form fine spherical particles having a particle size of less than about 20 micrometers in diameter.
    Type: Grant
    Filed: January 3, 1989
    Date of Patent: July 31, 1990
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson
  • Patent number: 4914345
    Abstract: Metal lamp bases for electric lamps fabricated from certain relatively high copper and low zinc content copper alloys and lamps employing same are resistant to cracking in corrosive environments.
    Type: Grant
    Filed: March 4, 1988
    Date of Patent: April 3, 1990
    Assignee: General Electric Company
    Inventors: Albert L. Suster, Winston T. Bachmann, Edward M. Beesley, John Gritti, Clifford W. Paugh, William H. Sullivan, Gene I. Thomasson
  • Patent number: 4872048
    Abstract: A semiconductor device having leads of high strength and elongation and which consist essentially of a copper alloy that contains 0.05-1% of Cr, 0.005-0.3% of Zr, 0.001-0.05% of Li, 0-1% of Ni, 0-1% of Sn, 0-1% of Ti, 0-0.1% of Si and 0.001-0.3% of at least one element selected from the group consisting of P, Mg, Al, Zn and Mn, with the balance being Cu and no more than 0.1% of incidental impurities, the percent being on a weight basis. The invention also provides a semiconductor device having leads of high strength and elongation and which consist essentially of a copper alloy that contains either 0.05-1% of Cr or 0.005-0.3% of Zr or both, 0.001-0.05% of Li, 0-1% of Ni, 0-1% of Sn, 0-1% of Ti, 0-0.
    Type: Grant
    Filed: March 10, 1988
    Date of Patent: October 3, 1989
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Hidetoshi Akutsu, Takuro Iwamura, Masao Kobayashi
  • Patent number: 4865645
    Abstract: The nuclear radiation metallic absorber contains a metallic copper alloy containing 0.05 to 50% of boron in weight, compared to the total alloy weight, preferably 0.05 to 10% boron in weight, compared to the total alloy weight. Moreover it may contain additional elements such as neutron absorbing elements, mechanical, physical and technological properties reinforcing elements, fibres or anti-corrosion elements.It may more specifically be used for neutron and .gamma. and X radiation absorption.
    Type: Grant
    Filed: January 30, 1989
    Date of Patent: September 12, 1989
    Inventor: Claude Planchamp
  • Patent number: 4859417
    Abstract: A new copper-based alloy is described, the principle characteristic of which lies in having two different age-hardening temperature intervals corresponding to which significantly different electrical and mechanical characteristics are obtained from an alloy of the same composition; the alloy is composed, in parts by weight, of from 0.05 to 1% Mg, from 0.03 to 0.9% P and from 0.002 to 0.04% Ca, the remainder being Cu with possible very small additions of other alloying elements such as Sn, Zr, Mn and Li.
    Type: Grant
    Filed: November 30, 1988
    Date of Patent: August 22, 1989
    Assignee: Europa Metalli-Lmi Societa Per Azioni
    Inventor: Stefano Innocenti
  • Patent number: 4818283
    Abstract: A process for producing a dispersion hardened copper alloy includes admixing to a copper melt from 0.3 to 15 weight % of molybdenum to provide a mixture which is a melt; superheating the mixture to a temperature ranging from about 200.degree. C. to about 1000.degree. C. above the melting point of coper to provide a superheated melt; and subjecting the superheated melt to very rapid solidification at a cooling rate ranging from 104.degree. to 106.degree. C./sec. The above process produces dipsersion hardened copper alloy comprising copper and from 1 to 15 weight % of molybdenum which is present in the dispersion hardened copper alloy as particles having a diameter of less than 0.1 .mu.m embedded in the copper matrix. Such dispersion hardened copper alloys are useful for providing electrical conductors which are subjected to elevated temperatures, such as for providing spot welding electrodes, particularly for welding of zinc-galvanized sheet metal.
    Type: Grant
    Filed: October 16, 1987
    Date of Patent: April 4, 1989
    Assignee: Battelle-Institut e.V.
    Inventors: Karl-Heinz Grunthaler, Dieter Langbein, Fehmi Nilmen, Heinrich Winter
  • Patent number: 4792369
    Abstract: The present invention relates to a copper wire for use in sound or image reproducing systems, such as audio, video and television systems, etc., and a method for manufacturing the same. The copper wire consists of high purity copper in which silver and sulfur contents are both not more than 0.5 ppm and preferably has a crystal grain size not less than 0.02 mm and is unidirectionally solidified or single crystallized. Such a copper wire is manufactured by continuously casting electrodeposited copper which has been obtained by refining by re-electrolysis of electrolytic copper, using a specially arranged casting apparatus having a mold projecting to an electrolytic bath.
    Type: Grant
    Filed: July 30, 1987
    Date of Patent: December 20, 1988
    Assignee: Nippon Mining Co., Ltd.
    Inventors: Takashi Ogata, Masanori Kato, Yoshio Kawasumi, Chikara Tominaga, Kanji Tanaka
  • Patent number: 4786469
    Abstract: The invention provides a grain refinement method for copper-based metals, which method can be applied to a range of different types of such metals. In accordance with the method, one arranges that a melt of the metal to be grain refined contains each of the following components:(a) titanium and/or zirconium;(b) at least one of: lithium, sodium, potassium, beryllium, magnesium, calcium, strontium and barium;(c) at least one of: scandium, yttrium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, silver, gold, zinc, cadmium, mercury and the rare earth elements; and(d) at least one of: aluminium, gallium, indium, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, sulphur, selenium and tellurium;and solidifies the melt to produce grain refinement of the copper-based metal. The invention also provides grain refiners for practicing the method.
    Type: Grant
    Filed: August 11, 1986
    Date of Patent: November 22, 1988
    Assignee: London & Scandinavian Metallurgical Co Limited
    Inventors: Gerhard Weber, Winfried Reif
  • Patent number: 4777335
    Abstract: A contact forming material for a vacuum valve or vacuum circuit breaker comprising (a) a conductive material consisting of copper and/or silver, and (b) an arc-proof material consisting of chromium, titanium, zirconium, or an alloy thereof wherein the amount of said arc-proof material present in said conductive material matrix is no more than 0.35% by weight. This contact forming material is produced by a process which comprises the steps of compacting arc-proof material powder into a green compact, sintering said green compact to obtain a skeleton of the arc-proof material, infiltrating the voids of said skeleton with a conductive material, and cooling the infiltrated material. The contact forming material can provide contacts for a vacuum valve or vacuum circuit breaker which has excellent characteristics such as temperature rise characteristic and contact resistance characteristic.
    Type: Grant
    Filed: January 20, 1987
    Date of Patent: October 11, 1988
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsutomu Okutomi, Seishi Chiba, Mikio Okawa, Tadaaki Sekiguchi, Hiroshi Endo, Tsutomu Yamashita
  • Patent number: 4749548
    Abstract: Copper alloy lead materials used in the fabrication of semiconductor devices such as ICs and LSIs are required to have a tensile strength of 40 kgf/mm.sup.2 or more, an elongation of 4% or more, an electrical conductivity of 50% IACS or more, and a softening point of 400.degree. C. or higher.The copper alloy lead material of the present invention exhibits even higher degrees of tensile strength and elongation and yet satisfy the values of electrical conductivity and softening point that are required for Cu alloy lead materials to be used with ordinary semiconductor devices. Therefore, the Cu alloy lead material of the present invention is applicable not only to ordinary semiconductor devices but also to those with higher packing densities while displaying equally superior performance.
    Type: Grant
    Filed: September 3, 1986
    Date of Patent: June 7, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Hidetoshi Akutsu, Takuro Iwamura, Masao Kobayashi
  • Patent number: 4726858
    Abstract: A recording material made of an alloy capable of exhibiting different spectral reflectances at an equal temperature, depending on a heating-cooling cycle to which the alloy is subjected. The alloy can possess in solid state different crystal structures at a first temperature higher than the room temperature and at a second temperature lower than the first temperature but not lower than the room temperature. A part of the surface of the alloy exhibits, as a result of being quenched from the first temperature, a crystal structure which is different from the crystal structure at the second temperature, while the other part possesses the crystal structure at the second temperature, so that these two parts exhibit different spectral reflectances. Using this recording medium, it is possible to record, reproduce and erase information by means of, for example, laser beams.
    Type: Grant
    Filed: August 22, 1984
    Date of Patent: February 23, 1988
    Assignee: Hitachi, Ltd.
    Inventors: Tetsuro Minemura, Hisashi Ando, Isao Ikuta, Yoshiaki Kita
  • Patent number: 4717436
    Abstract: The present invention eliminates the problems associated with the use of oxygen-free copper and other high-purity copper materials as bonding wires. In accordance with one aspect of the present invention, at least one rare earth element, or at least one element selected from the group consisting of Mg, Ca, Ti, Zr, Hf, Li, Na, K, Rb and Cs, or the combination of at least one rare earth element and at least one elemented selected from the above-specified group is incorporated in high-purity copper as a refining component in an amount of 0.1-100 ppm on a weight basis, and the high-purity copper is subsequently refined by zone melting. The very fine wire drawn from the so refined high-purity copper has the advantage that it can be employed in high-speed ball bonding of a semiconductor chip with a minimum chance of damaging the bonding pad on the chip by the ball forming at the tip of the wire.In accordance with another aspect of the present invention, 0.
    Type: Grant
    Filed: April 9, 1987
    Date of Patent: January 5, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Naoyuki Hosoda, Masaki Morikawa, Naoki Uchiyama, Hideaki Yoshida, Toshiaki Ono
  • Patent number: 4708739
    Abstract: The invention provides a grain refinement method for copper-based metals, which method can be applied to a range of different types of such metals.
    Type: Grant
    Filed: September 29, 1986
    Date of Patent: November 24, 1987
    Assignee: London & Scandinavian Metallurgical Co. Limited
    Inventors: James L. F. Kellie, Andrew J. J. Cowell
  • Patent number: 4677264
    Abstract: The present invention provides a contact material for a vacuum circuit breaker containing therein copper (Cu) and chromium (Cr) with further addition of at least one kind of boride selected from borides of chromium (Cr), molybdenum (Mo) and tungsten (W). Such contact material possesses remarkable advantages of having large current breaking capability and high voltage withstand capability.
    Type: Grant
    Filed: December 5, 1985
    Date of Patent: June 30, 1987
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Mitsuhiro Okumura, Eizo Naya, Mitsuhiro Harima, Shoji Murakami, Seiichi Miyamoto