Oxygen Containing Patents (Class 423/325)
  • Publication number: 20120208690
    Abstract: An article including a monolithic crucible body comprising silicon oxynitride (SixNyO, wherein x>0 and y>0), wherein the silicon oxynitride extends throughout the entire volume of the monolithic crucible body.
    Type: Application
    Filed: December 28, 2011
    Publication date: August 16, 2012
    Applicant: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Edmund A. Cortellini, Christopher J. Reilly, Vimal K. Pujari
  • Publication number: 20120208728
    Abstract: The present invention provides a method for inhibiting scale formation within a hydrocarbon producing system (e.g. a subterranean formation), said method comprising contacting said system with a clay mineral, an organosilane and a scale inhibitor.
    Type: Application
    Filed: August 19, 2010
    Publication date: August 16, 2012
    Applicant: STATOIL ASA
    Inventors: Niall Fleming, Kari Ramstad
  • Publication number: 20120164051
    Abstract: The present invention relates to a method for the enhanced production of insulating layers by High Power Impulse Magnetron Sputtering (HiPIMS) or High Power Pulsed Magnetron Sputtering (HPPMS). This method is preferably used for the production of oxynitride layers with variable amounts of oxide and nitride, preferably based on silicon and aluminium.
    Type: Application
    Filed: May 5, 2010
    Publication date: June 28, 2012
    Inventors: Stefan Bruns, Oliver Werner, Michael Vergohl
  • Patent number: 8206675
    Abstract: The present invention relates to a polyethoxysiloxane (PES) material to be obtained in that (a) a first hydrolysis condensation reaction of a maximum of one group X of one or more different Si compounds of the formula (I) SiX4 (I) in which the groups X are the same or different and represent hydroxy, hydrogen, or ethoxy (EtO), are catalyzed in an acidic fashion at an initial pH value of 0 to ?7, is conducted in the presence of ethanol (EtOH) or an ethanol-water mixture as a solvent over a time period of 1 to 24 hours at a temperature of 0° C. to 78° C, (b) a second hydrolysis condensation reaction of the material obtained in step (a) is conducted while simultaneously removing the solvent by successive evaporation in a gas diffusion-tight container at a pressure of 100 to 1013 mbar, preferably at a slight negative pressure of 300 mbar to 800 mbar and a temperature of 50-78° C. until a drastic increase in viscosity (at a shear rate of 10 s?1 at 4° C.) to 0.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: June 26, 2012
    Assignee: Bayer Innovation GmbH
    Inventor: Axel Thierauf
  • Publication number: 20120156120
    Abstract: A silicon oxide in the form of powder is represented by SiOx, wherein, when the silicon oxide is measured by use of an X-ray diffractometer comprising a sealed tube light source as a light source and a high speed detector as a detector, a halo is detected at 20°?2??40°, and a peak is detected at the highest quartz line position therein. The height P1 of the halo and the height P2 of the peak at the highest quartz line position satisfy P2/P1?0.05. This silicon oxide is used as the negative electrode active material, whereby a lithium-ion secondary battery having stable initial efficiency and cycle characteristic can be obtained. The x of the SiOx is preferably 0.7<x<1.5. A negative electrode material for lithium-ion secondary battery contains not less than 20 mass % of this silicon oxide as a negative electrode active material.
    Type: Application
    Filed: June 17, 2010
    Publication date: June 21, 2012
    Applicant: OSAKA TITANIUM TECHNOLOGIES CO.,TD.
    Inventors: Shingo Kizaki, Hideaki Kanno
  • Publication number: 20120142792
    Abstract: The removal of fluoroalkanes from fluoroalkane-containing hydrocarbon streams, preferably C3 to C5 hydrocarbon streams. The fluoroalkane-containing hydrocarbon stream is contacted with an adsorbent containing a strong acid function, preferably a silica gel or a strong cation ion-exchange resin having sulfonic acid functionality.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 7, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kenneth A. BOATENG, Marc-Andre POIRIER
  • Publication number: 20120131973
    Abstract: A filter for treating CO2 from a CO2-emitting industrial plant, takes advantage of the fact that peridotite igneous rocks (or material of similar chemical content: basalt, gabbro, dunite, amphibolites, artificially produced Ca, Mg oxides) which are abundant on and close to the Earth's surface, can absorb and contain CO2 gases resultant from industrial activity. This chemical process occurs naturally, but has not been utilized to capture high concentrations of CO2 emitted into the atmosphere. Calcium and magnesium oxides of the peridotite react with CO2 to form stable carbonate minerals. The invention enhances and expedites this natural process for the remediation of industrial pollutants such as CO2 from the oil, gas, coal, cement/concrete and like CO2-emitting industries, and provides a resource for materials in construction (concrete), steel, aviation and agricultural and other industries.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 31, 2012
    Inventors: Darius Greenidge, Jean Greenidge
  • Publication number: 20120134917
    Abstract: Dermatological methods of cosmetic, therapeutic, prophylactic, and/or diagnostic treatment by topically applying compositions comprising a multiplicity of particles, at least one of the particles comprising porous and/or polycrystalline silicon. Included are methods and compositions for sun protection applications. The use of porous silicon, polycrystalline silicon, and porous silicon oxide mirrors is disclosed.
    Type: Application
    Filed: January 27, 2012
    Publication date: May 31, 2012
    Applicant: pSiMedica Limited
    Inventors: Leigh T. Canham, Roger Aston
  • Patent number: 8182781
    Abstract: The present disclosure refers to sila-substituted carbinols of formula (I) wherein R1, R2 and R3 are independently selected from C1-C4 alkyl or C3-C4 cycloalkyl; R4 is methyl or ethyl; and R5 is methyl or ethyl. The disclosure further refers to their preparation and to perfume compositions and fragrance applications comprising them.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: May 22, 2012
    Assignee: Givaudan S.A.
    Inventors: Philip Kraft, Astrid Sunderkötter, Reinhold Tacke
  • Publication number: 20120121493
    Abstract: The present invention provides a method for obtaining high purity chlorosilanes from chlorosilanes containing boron impurities and phosphorus impurities. On the basis of the finding that solid by-product formation in the purification of chlorosilanes by adding an aromatic aldehyde results from a catalytic reaction by iron ions or rust-like iron, a Lewis base having a masking effect is added to chlorosilanes. Examples of the Lewis base include a divalent sulfur-containing compound and an alkoxysilane. The divalent sulfur-containing compound is preferably a compound represented by the formula: R—S—R? (wherein R is a hydrocarbon group or a carbonyl group; and the sum of the carbon atoms in R and R? is 7 or more), and the alkoxysilane is preferably a compound represented by the formula: RxSi(OR?)4-x (wherein R and R? are each an alkyl group having 1 to 20 carbon atoms).
    Type: Application
    Filed: July 7, 2010
    Publication date: May 17, 2012
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Naoki Nagai, Takaaki Shimizu, Katsuhiro Uehara, Tohru Kubota
  • Publication number: 20120107215
    Abstract: A method of preferentially removing or recovering silica from a source, including aqueous sources such as ground and potable water, which utilizes a modified ion exchange material that holds or captures the silica by ion exchange with a metal contained in the exchange material whereby the method includes the steps of: providing an ion exchange material; immobilizing a metal complex to form at least a portion of a metal containing substance inside the ionic exchange material; and contacting the source with at least a portion of the metal containing ionic exchange material.
    Type: Application
    Filed: January 19, 2011
    Publication date: May 3, 2012
    Applicant: RESINTECH, INC.
    Inventors: Michael C. Gottlieb, Peter S. Meyers
  • Publication number: 20120107213
    Abstract: Methods of the present invention can be used to synthesize nanowires with controllable compositions and/or with multiple elements. The methods can include coating solid powder granules, which comprise a first element, with a catalyst. The catalyst and the first element should form when heated a liquid, mixed phase having a eutectic or peritectic point. The granules, which have been coated with the catalyst, can then be heated to a temperature greater than or equal to the eutectic or peritectic point. During heating, a vapor source comprising the second element is introduced. The vapor source chemically interacts with the liquid, mixed phase to consume the first element and to induce condensation of a product that comprises the first and second elements in the form of a nanowire.
    Type: Application
    Filed: December 28, 2011
    Publication date: May 3, 2012
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jiguang Zhang, Jun Liu, Zhenguo Yang, Guanguang Xia, Leonard S. Fifield, Donghai Wang, Daiwon Choi, Gordon L. Graff, Larry R. Pederson
  • Publication number: 20120107607
    Abstract: A multilayered material is provided which includes a substrate and a silicon-containing film formed on the substrate, wherein the silicon-containing film has a nitrogen-rich area including silicon atoms and nitrogen atoms, or silicon atoms, nitrogen atoms, and an oxygen atoms and the nitrogen-rich area is formed by irradiating a polysilazane film formed on the substrate with an energy beam in an atmosphere not substantially including oxygen or water vapor and denaturing at least a part of the polysilazane film. A method of producing the multilayered material is also provided.
    Type: Application
    Filed: July 12, 2010
    Publication date: May 3, 2012
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Toshihiko Takaki, Haruhiko Fukumoto
  • Publication number: 20120085974
    Abstract: A silicon oxide for use as a negative electrode active material of a lithium-ion secondary battery is characterized by: a g-value measured by an ESR spectrometer is in the range of not less than 2.0020 to not more than 2.0050; and given that A, B, and C are the area intensities of peaks near 420 cm?1, 490 cm?1 and 520 cm?1 respectively in a Raman spectrum measured by a Raman spectroscopy, A/B is not less than 0.5 and C/B is not more than 2. The lithium-ion secondary battery has excellent cycle characteristic and initial efficiency in addition to high capacity. The silicon oxide preferably has a spin density in the range of not less than 1×1017 spins/g to not more than 5×1019 spins/g. A negative electrode material for the lithium-ion secondary battery contains not less than 20% by mass of this silicon oxide as a negative electrode active material.
    Type: Application
    Filed: April 21, 2010
    Publication date: April 12, 2012
    Inventor: Shingo Kizaki
  • Patent number: 8148434
    Abstract: A process for producing an aqueous silica-based sol is disclosed wherein a cationic ion exchange resin having part of its ion exchange capacity in hydrogen form is contacted with an aqueous alkali metal silicate to form a slurry having a pH from 5.0 to 11.5 and/or having particle aggregation or microgel formation corresponding to a S value up to 45%; adjusting the pH using a material comprising an aluminum compound; and separating the resin from the slurry. Silica-based sols having an S value from 15 to 25%, mole ratio Si:Al from 20:1 to 50:1, mole ratio Si:X, where X=alkali metal, from 5:1 to 17:1, SiO2 content of at least 5% by weight and containing silica-based particles having a specific surface area of at least 300 m2/g, as well as the use of such silica-based sols in producing paper are disclosed.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: April 3, 2012
    Assignee: Akzo Nobel N.V.
    Inventors: Johan Nyander, Glenn Mankin
  • Patent number: 8142751
    Abstract: In a powder-sintered type silicon monoxide based evaporating material which is used to form an evaporated film of silicon monoxide, the generation of splash is restrained. Material strength that can resist against the use of the material is ensured. In order to realize these, a starting powder made of precipitating SiO is sintered at 700 to 1000° C. to form an evaporating material. The precipitation of Si is restrained in the step of the sintering. In the measurement thereof by XRD, the peak strength P1 at a Si peak point generated near 2?=28° and the base strength P2 at the peak point expected from the average strength gradient before and after the peak point satisfies the following: P1/P2?3. The compression fracture strength of the evaporating material after the material is sintered is raised to 5 MPa or more by selective use of precipitating SiO produced by a vacuum condensing machine.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: March 27, 2012
    Assignee: OSAKA Titanium technologies Co., Ltd.
    Inventor: Yoshitake Natsume
  • Publication number: 20120052300
    Abstract: The present invention relates to a process for producing a particulate nanocomposite material, in which the particles of the nanocomposite material comprise a) at least one inorganic or organo(semi)metallic phase which comprises at least one (semi)metal M; and b) at least one organic polymer phase. The invention also relates to the nanocomposite materials obtainable by this process. The process comprises the polymerization of at least one monomer MM which has at least one first cationically polymerizable monomer unit A which has a metal or semimetal M, and at least one second cationically polymerizable organic monomer unit B which is joined to the polymerizable unit A via at least one, e.g.
    Type: Application
    Filed: May 7, 2010
    Publication date: March 1, 2012
    Applicant: BASF SE
    Inventors: Samira Nozari, Rainer Dyllick-Brenzinger, Arno Lange, Stefan Spange
  • Patent number: 8110167
    Abstract: Methods of the present invention can be used to synthesize nanowires with controllable compositions and/or with multiple elements. The methods can include coating solid powder granules, which comprise a first element, with a catalyst. The catalyst and the first element should form when heated a liquid, mixed phase having a eutectic or peritectic point. The granules, which have been coated with the catalyst, can then be heated to a temperature greater than or equal to the eutectic or peritectic point. During heating, a vapor source comprising the second element is introduced. The vapor source chemically interacts with the liquid, mixed phase to consume the first element and to induce condensation of a product that comprises the first and second elements in the form of a nanowire.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: February 7, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Jiguang Zhang, Jun Liu, Zhenguo Yang, Guanguang Xia, Leonard S Fifield, Donghai Wang, Daiwon Choi, Gordon Graff, Larry R Pederson
  • Publication number: 20120014858
    Abstract: A method of preparing hydrophobic silica particles includes the step of reacting together in a single step a mixture of silane ether monomers and organically modified silane ether monomers with a hydrolyzing agent. The method also includes producing hydrophobic silica microparticles and nanoparticles that can include dyes and/or magnetizable components. The silica nanoparticles can be used in the detection, visualization and/or analysis of latent fingerprints.
    Type: Application
    Filed: September 26, 2011
    Publication date: January 19, 2012
    Inventor: Frederick John Rowell
  • Publication number: 20110318249
    Abstract: Disclosed is a porous metal oxide obtained by subjecting metal alkoxide and/or a partially hydrolyzed condensate of the metal alkoxide to a sol-gel reaction in the presence of terminally branched copolymer particles represented by the following general formula (1) and having a number average molecular weight of not more than 2.
    Type: Application
    Filed: March 12, 2010
    Publication date: December 29, 2011
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Norio Nakayama, Toshihiko Takaki, Haruhiko Fukumoto, Kaori Matoishi, Shiro Nakatsuka, Naoshi Nagai, Eiichi Takahashi, Yukiko Enomoto
  • Publication number: 20110311805
    Abstract: The invention relates to a cutting tool having a substrate base body and a single or multi-layered coating attached thereupon, wherein at least one layer of the coating is a metal oxide layer produced in the PVD process or in the CVD process and the metal oxide layer has a grain structure wherein there is structural disorder within a plurality of the existing grains that are characterized in that in electron diffraction images of the grains, point-shaped reflections occur up to a maximum lattice spacing dGRENZ and for lattice spacing greater than dGRENZ no point-shaped reflections occur, but rather a diffuse intensity distribution typical for amorphous structures.
    Type: Application
    Filed: March 18, 2010
    Publication date: December 22, 2011
    Applicant: WALTER AG
    Inventors: Veit Schier, Oliver Eibl, Wolfgang Engelhart
  • Publication number: 20110311427
    Abstract: The present disclosure describes carbon nanotube arrays having carbon nanotubes grown directly on a substrate and methods for making such carbon nanotube arrays. In various embodiments, the carbon nanotubes may be covalently bonded to the substrate by nanotube carbon-substrate covalent bonds. The present carbon nanotube arrays may be grown on substrates that are not typically conducive to carbon nanotube growth by conventional carbon nanotube growth methods. For example, the carbon nanotube arrays of the present disclosure may be grown on carbon substrates including carbon foil, carbon fibers and diamond. Methods for growing carbon nanotubes include a) providing a substrate, b) depositing a catalyst layer on the substrate, c) depositing an insulating layer on the catalyst layer, and d) growing carbon nanotubes on the substrate. Various uses for the carbon nanotube arrays are contemplated herein including, for example, electronic device and polymer composite applications.
    Type: Application
    Filed: December 11, 2009
    Publication date: December 22, 2011
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Robert H. Hauge, Cary L. Pint, Noe Alvarez, W. Carter Kittrell
  • Patent number: 8071237
    Abstract: In a negative electrode active material for a lithium ion secondary battery including a silicon oxide capable of absorbing and desorbing lithium ions, a silicon oxide having structural units each in the form of a tetrahedron in which a silicon atom is located at its center and silicon or oxygen atoms are located at its four vertices is used. The structural units are arranged randomly to form an amorphous structure. In the case that the number of oxygen atoms located at the four vertices in the structural units is represented by n (n=0, 1, 2, 3 or 4) and the structural units are represented by Si(n), the number of the structural units NSi(n) in the silicon oxide satisfies the following relations (1) to (3). [ Formula ? ? 1 ] NSi ? ( 0 ) ? NSi ? ( n ) ? 0.1 ( 1 ) Nsi ? ( 4 ) ? NSi ? ( n ) ? 0.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: December 6, 2011
    Assignee: Panasonic Corporation
    Inventors: Kazuya Iwamoto, Shuji Ito
  • Patent number: 8066806
    Abstract: A sintered silicon oxide for film vapor deposition having a density of 1.0 to 2.0 g/cm3, three-point flexural strength of at least 50 g/mm2, and a BET specific surface area of 0.1 to 20 m2/g is provided. When this sintered silicon oxide is used for evaporation source of a film, pin holes and other defects of the film caused by the problematic splash phenomenon can be reliably prevented and stable production of a reliable package material having excellent gas barrier property is been enabled. This invention also provides a method for producing such sintered silicon oxide, and this method can be used in a large scale production without requiring any special technology, and therefore, this method is capable of supplying the market with the sintered silicon oxide at reduced cost.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: November 29, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hirofumi Fukuoka, Meguru Kashida, Toshio Ohba
  • Patent number: 8057770
    Abstract: A method is provided for treating silica sand scrubs (SSS) generated and accumulated as waste in the chloride manufacturing process of titanium dioxide pigment. A hydrothermal process is used to produce sodium silicate solutions of modulus 3.0 to 3.8, and precipitated silicas. In some embodiments, the process uses two specific principal reaction stages. A sodium silicate solution having a low SiO2:Na2O molar ratio, in the range from 2.0 to 2.8, is first produced by reaction of the SSS, as a cost-effective SiO2 source, with aqueous caustic soda. The conversion of this intermediate sodium silicate solution of low modulus to a high SiO2:Na2O molar ratio is made possible by using a SiO2 source that is prepared as precipitated amorphous silica from the intermediate sodium silicate solution produced above.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: November 15, 2011
    Assignee: The National Titanium Dioxide Co., Ltd. (CRISTAL)
    Inventors: Fadi Mohammed Saeed Trabzuni, Hassan Moenes El Dekki, Chathangat Cheroolil Gopalkrishnan
  • Publication number: 20110275507
    Abstract: The invention relates to dielectric layers with a low dielectric constant, said layers being used to separate metallic interconnections especially during the production of integrated circuit boards (in the BEOL part of the circuit). According to the invention, the dielectric layer comprises SiC and/or SiOC, and is obtained from at least one precursor comprising at least one —Si—C<SUB>n</SUB>—Si chain where n=I.
    Type: Application
    Filed: July 1, 2011
    Publication date: November 10, 2011
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Christian DUSSARRAT
  • Patent number: 8053507
    Abstract: The present invention relates to elastomeric compounds having a high filler content additionally containing 1 to 400% by weight of resin of microsilica as a modifier to improve the processability. Thereafter, the invention relates to a method for production of elastomeric compounds having a high filler content, wherein microsilica is added to the elastomeric compounds in an amount of 1 to 400% by weight of resin as a modifier to improve processability.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: November 8, 2011
    Assignee: Elkem AS
    Inventor: Gerd Schmaucks
  • Publication number: 20110268779
    Abstract: A chewing gum composition comprising porous silicon is described.
    Type: Application
    Filed: November 19, 2009
    Publication date: November 3, 2011
    Inventor: Leigh Trevor Canham
  • Patent number: 8048195
    Abstract: The present invention relates to the use of liquid-crystal displays (LCDs), and to processes for the recycling thereof. The processes according to the invention are characterised in that the LCDs are employed at least partly as replacement for other raw materials. In general, the LCDs are thermally treated here at a temperature in the range from 900 to 1700° C.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: November 1, 2011
    Assignee: Merck Patent GmbH
    Inventor: Roland Martin
  • Publication number: 20110256184
    Abstract: A non-ordered geometric mesoporous structure that provides for enhanced loading of antibodies such as IgG as compared to ordered mesoporous structures. This structure is formed by treating silica precursors at a hydrothermal aging temperature between 100 and 200 degrees C. This creates the non-ordered mesoporous structure. Biomolecules such as IgG can then be spontaneously loaded via non-covalent bonding within the as-made or functionalized mesoporous structure.
    Type: Application
    Filed: April 13, 2011
    Publication date: October 20, 2011
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Chenghong Lei, Jun Liu, Xiaolin Li
  • Publication number: 20110229540
    Abstract: A cosmetic formulation comprising porous silicon is described.
    Type: Application
    Filed: September 30, 2009
    Publication date: September 22, 2011
    Inventors: Leigh Canham, Tanya Monga
  • Patent number: 8012367
    Abstract: Pulverulent materials which contain surface-modified and structure-modified pyrogenically prepared metalloid or metallic oxide for the purposes of improvement.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: September 6, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: Steffen Hasenzahl, Claus-Peter Drexel, Jürgen Meyer
  • Publication number: 20110209294
    Abstract: An agent that is capable of improving dye fastness is provided. The agent includes a compound that includes at least one functional group capable of forming at least one interaction or at least one bond with a fiber or a dye molecule. Also, a method for using the agents to improve dye fastness and a dyed article including the agent are provided.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventor: Dong Hoon CHOI
  • Patent number: 7998263
    Abstract: A sintered silicon oxide for film vapor deposition having a density of 1.0 to 2.0 g/cm3, three-point flexural strength of at least 50 g/mm2, and a BET specific surface area of 0.1 to 20 m2/g is provided. When this sintered silicon oxide is used for evaporation source of a film, pin holes and other defects of the film caused by the problematic splash phenomenon can be reliably prevented and stable production of a reliable package material having excellent gas barrier property is been enabled. This invention also provides a method for producing such sintered silicon oxide, and this method can be used in a large scale production without requiring any special technology, and therefore, this method is capable of supplying the market with the sintered silicon oxide at reduced cost.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: August 16, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hirofumi Fukuoka, Meguru Kashida, Toshio Ohba
  • Publication number: 20110182793
    Abstract: A sheet silicate, a framework silicate, and a process of producing the same.
    Type: Application
    Filed: April 8, 2011
    Publication date: July 28, 2011
    Applicants: BASF SE, rubitec GmbH
    Inventors: Ulrich Müller, Roger Ruetz, Hermann Gies
  • Publication number: 20110184077
    Abstract: The present invention is a method for decomposing a polymer material by chemically decomposing a polymer material containing a first monomer and a second monomer in a mixture of the polymer material with the first monomer or a derivative of the first monomer to produce a chemical raw material. A relationship between a proportion of number of molecules of the second monomer to number of molecules of the first monomer in a reaction system for decomposing the polymer material and the molecular weight of the chemical raw material produced in the reaction system is acquired in advance (S101). Subsequently, an addition mount of the derivative of the first monomer to be added to the polymer material is determined based on the above relationship (S102). The first monomer in the addition amount determined is then mixed with the polymer material (S103).
    Type: Application
    Filed: September 9, 2009
    Publication date: July 28, 2011
    Applicant: SUMITOMO BAKELITE CO., LTD
    Inventors: Junya Goto, Masaki Ishikawa, Tamotsu Orihara, Taichi Koide
  • Publication number: 20110176984
    Abstract: A method for preparation of high purity silicon suitable for photovoltaic cells using reduction of silica, which is pre-purified in an aqueous solution, in presence of a reducing agent, preferably carbonaceous agent, where the pre-purified silica has a low amount of boron suitable for photovoltaic cells is described.
    Type: Application
    Filed: March 7, 2011
    Publication date: July 21, 2011
    Inventor: Steven C. Amendola
  • Publication number: 20110171097
    Abstract: The present invention relates to fullerene-silica nanoparticles with improved fluorescence, a preparation method of the fullerene-silica nanoparticles, and use thereof. More specifically, the present invention relates to fullerene-silica nanoparticles with improved fluorescence in which fullerene and silica are covalently linked, a preparation method of the fullerene-silica nanoparticles, and use thereof. The preparation method of the fullerene-silica nanoparticles comprises the steps of: adding a surfactant to a non-polar organic solvent and a polar solvent and stirring them to form reverse micelles (step 1); adding fullerene to the reverse micelles formed in the step 1 and stirring them (step 2); and adding a silica precursor and a catalyst to a reaction solution containing the fullerene prepared in the step 2 and stirring them to prepare fullerene-silica nanoparticles (step 3).
    Type: Application
    Filed: January 6, 2009
    Publication date: July 14, 2011
    Applicant: KOREA RESEARCH INSTITUTE OF BIOSCIENCE AND BIOTECHNOLOGY
    Inventors: Bong Hyun Chung, Jinyoung Jeong, Nam Woong Song
  • Patent number: 7976638
    Abstract: A composition for removing particulate matter from integrated circuit substrates, including (a) one or more metal ion-free base; (b) a water-soluble metal ion-free onium salt of a polyhedral silsesquioxane; (c) an oxidizing agent; and (d) metal ion-free water, and a composition obtained by combining ingredients including (a), (b), (c) and (d). A process for removing particulate matter from a surface of an integrated circuit device, including applying to the surface the composition including (a), (b), (c) and (d) or applying to the surface the composition obtained by combining ingredients including (a), (b), (c) and (d).
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: July 12, 2011
    Assignee: Sachem, Inc.
    Inventor: Jianjun Hao
  • Patent number: 7954341
    Abstract: The invention is concerned with a material which shows low absorption for UV radiation having a wavelength below 250 nm, low birefringence, high chemical resistance and high radiation resistance and which is therefore particularly usable for making optical components for microlithography. According to the invention the material consists of synthetically produced quartz crystallites which form a polycrystalline structure and have a mean grain size in the range between 500 nm and 30 ?m. The method according to the invention for making a blank from the material comprises providing granules consisting of synthetically produced quartz crystals having a mean grain size in the range between 500 nm and 30 ?m, and sintering the granules to obtain a blank of polycrystalline quartz.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: June 7, 2011
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Bodo Kuehn, Stefan Ochs
  • Patent number: 7955581
    Abstract: A method for producing a silicon oxide including the steps of supplying silicon atoms onto a substrate through an oxygen atmosphere to form a silicon oxide layer on the substrate, and separating the silicon oxide layer from the substrate and pulverizing the separated silicon oxide layer to obtain silicon oxide containing silicon and oxygen in predetermined proportions, and a negative electrode active material obtained by the production method.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: June 7, 2011
    Assignee: Panasonic Corporation
    Inventors: Yasutaka Kogetsu, Sumihito Ishida
  • Patent number: 7955582
    Abstract: A method for producing crystallized silicon according to the EFG process by using a shaping part, between which part and a silicon melt, crystallized silicon grows in a growth zone. Inert gas and at least water vapor are fed into the silicon melt and/or growth zone, by means of which the oxygen content of the crystallized silicon is increased. From 50 to 250 ppm of vapor water is added to the inert gas, and the inert gas has an oxygen, CO and/or CO2 content of less than 20 ppm total.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: June 7, 2011
    Assignee: Schott Solar GmbH
    Inventors: Albrecht Seidl, Ingo Schwirtlich
  • Patent number: 7947244
    Abstract: The present invention relates to a process for the preparation of a silicate comprising at least silicon and oxygen, comprising (1) mixing of silicon dioxide and/or of a silicon dioxide precursor with an aqueous solution comprising at least one tetraalkylammonium compound comprising R1R2R3R4N+ and at least one base, wherein R1 and R2 are methyl and both R3 and R4 are n-propyl; (2) heating of the colloidal solution obtained according to (1) to a temperature in the range of from greater than the boiling point of the colloidal solution under the chosen pressure to 180° C. at atmospheric pressure to give a suspension comprising at least one silicate, wherein the silicate comprising at least silicon and oxygen is added as a crystallization auxiliary in (1).
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: May 24, 2011
    Assignees: BASF SE, rubitec GmbH
    Inventors: Ulrich Mueller, Roger Ruetz, Hermann Gies
  • Patent number: 7922917
    Abstract: Porous, ferro- or ferrimagnetic, glass particles are described that selectively bind molecules of interest, especially nucleic acid molecules, under appropriate conditions. Methods of preparing the porous, ferro- or ferrimagnetic, glass particles and their use for identifying or separating molecules of interest are also described. Kits comprising the porous, ferro- or ferrimagnetic, glass particles are also provided.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: April 12, 2011
    Assignee: QIAGEN GmbH
    Inventors: Philippe Sauer, Bernd Springer, Thomas Manz, Christoph Ritt, Roland Fabis
  • Publication number: 20110074013
    Abstract: A silicon compound gas, an oxidizing gas, and a rare gas are supplied into a chamber (2) of a plasma processing apparatus (1). A microwave is supplied into the chamber (2), and a silicon oxide film is formed on a target substrate with plasma generated by the microwave. A partial pressure ratio of the rare gas is 10% or more of a total gas pressure of the silicon compound gas, the oxidizing gas, and the rare gas, and an effective flow ratio of the silicon compound gas and the oxidizing gas (oxidizing gas/silicon compound gas) is not less than 3 but not more than 11.
    Type: Application
    Filed: May 11, 2009
    Publication date: March 31, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hirokazu Ueda, Yoshinobu Tanaka, Yusuke Ohsawa, Toshihisa Nozawa, Takaaki Matsuoka
  • Patent number: 7915198
    Abstract: The present invention includes an aqueous solution, comprising boric acid and non-colloidal silicic acid. This solution can also comprise a water absorbing additive. The solution contains bioavailable non-colloidal silicic acid, and the solution is stable for more than one year. The invention also describes a method for the preparation of a solution in which one or more silicon and boron compounds are hydrolysed in an acidic solution containing one or more dissolved water absorbing additives.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: March 29, 2011
    Assignee: Sabalo, N.V.
    Inventor: Willem Adrianus Kros
  • Publication number: 20110069116
    Abstract: The present invention provides an image forming method and an ink composition used in the method by which deterioration of a head plate which is formed of silicon is suppressed and more precise images are stably formed, where ink containing an inorganic silicate compound is ejected to form an image from an inkjet head having a nozzle plate where SiO2 film is provided on a surface thereof at a side toward the ink ejection direction of the nozzle.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 24, 2011
    Applicant: FUJIFILM CORPORATION
    Inventors: Tomoyuki OHZEKI, Jun MATSUMOTO, Masao IKOSHI
  • Publication number: 20110069117
    Abstract: The present invention provides an image forming method and an ink composition whereby deterioration of a head plate, which is formed of silicon, is suppressed, and an image with higher precision is formed stably, the ink composition including an inorganic silicate compound and being ejected to form an image from an ink-jet head having a nozzle plate where a C8F17C2H4SiCl3 film (fluorocarbon film) is provided on the surface thereof at a side toward the ink ejection direction of a nozzle.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 24, 2011
    Applicant: FUJIFILM CORPORATION
    Inventors: Tomoyuki OHZEKI, Jun MATSUMOTO, Masao IKOSHI
  • Publication number: 20110070141
    Abstract: A method of depositing a material on a substrate comprises placing a substrate into a process space in fluidic communication with a Gaede pump stage (GPS). A precursor gas is then injected into the process space while injecting a draw gas at a draw gas flow rate into the GPS such that the injected precursor gas achieves a precursor pressure and a precursor gas flow rate in the process space. Subsequently, substantially all of the precursor gas remaining in the process space is swept from the process space by injecting a sweep gas into the process space such that the injected sweep gas achieves a sweep pressure and sweep gas flow rate in the process space. The precursor pressure is higher than the sweep pressure, and the precursor gas flow rate is lower than the sweep gas flow rate.
    Type: Application
    Filed: May 6, 2009
    Publication date: March 24, 2011
    Applicant: Sundew Technologies LLC
    Inventor: Ofer Sneh
  • Patent number: 7901652
    Abstract: Porous silica-based particles with relatively larger average diameter of 1 micron or more and a low particle density are prepared. The method includes the steps of (a) preparing two-layer separated liquid including an organic silicon compound layer and a water layer, then adding an organic solvent, an alkali, and a surfactant into the water layer while agitating at least the water layer so that the organic silicon compound layer and the water layer are not completely mixed with each other, further hydrolyzing and/or partial hydrolyzing the organic silicon compound in the mixed aqueous solution to prepare silica-based particle precursors, (b) adding sodium aluminate into the mixed aqueous solution containing the silica-based particle precursors and then preparing silica-based particles having pores, cavities or voids inside the particles, and (c) washing and drying the silica-based particles. The particles are useful for various applications such as microcapsules, adsorbents, catalysts, and so on.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: March 8, 2011
    Assignee: JGC Catalysts and Chemicals Ltd.
    Inventors: Kazuaki Inoue, Kazuhiro Nakayama, Akira Nakashima