Electrically Conductive Adhesive Patents (Class 438/119)
  • Patent number: 8614504
    Abstract: A chip package includes a substrate, a pad, a double-sided adhesive tape, a chip, and a sealing member. The pad is arranged on the substrate and has a top surface facing away from the substrate. The double-sided adhesive tape includes a first paste surface and an opposing second paste surface. The first paste surface is attached to the top surface. The chip is attached onto the second paste surface and includes a light emitting surface or a light receiving surface facing away from the second paste surface. The sealing member is formed on the pad and tightly surrounds the chip and the double-sided adhesive.
    Type: Grant
    Filed: October 30, 2011
    Date of Patent: December 24, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kai-Wen Wu
  • Publication number: 20130334712
    Abstract: A method for manufacturing a chip package is provided. The method includes forming a layer over a carrier; forming further carrier material over the layer; selectively removing one or more portions of the further carrier material thereby releasing one or more portions of the layer from the further carrier material; and adhering a chip including one or more contact pads to the carrier via the layer.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 19, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Georg Meyer-Berg
  • Publication number: 20130316500
    Abstract: The method includes the steps of: providing a lead frame, including providing a concaved part in an upper face of a joint part of a die-pad-support lead of a lead frame for setting down a die pad and a tie-bar; bonding a semiconductor chip to a first principal face of the die pad via an adhesive-member layer; then, setting the lead frame between first and second molding dies having first and second cavities respectively so that the first and second cavities are opposed to each other, and the second principal face of the die pad faces toward the second cavity; and forming first and second resin sealed bodies on the sides of the first and second principal faces of the die pad respectively by resin sealing with the first and second molding dies clamping the tie-bar and a part of the lead frame surrounding the tie-bar.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 28, 2013
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Yusuke OTA, Fukumi SHIMIZU
  • Patent number: 8592260
    Abstract: The process for producing a semiconductor device of the invention is a process for producing a semiconductor device, comprising: a temporarily bonding step of bonding a semiconductor element temporarily on an adherend through an adhesive sheet, a semi-curing step of heating the adhesive sheet under predetermined conditions, thereby turning the sheet into a semi-cured state that the shearing adhering strength of the sheet to the adherend is 0.5 MPa or more, and a wire bonding step of causing the semiconductor element to undergo wire bonding in the state that the adhesive sheet is semi-cured.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: November 26, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Masami Oikawa, Takeshi Matsumura, Sadahito Misumi
  • Patent number: 8586480
    Abstract: A packaged power field effect transistor device includes a power field effect transistor die, a DBA substrate, a clip, a wire bond, leads, and an amount of plastic encapsulant. The top of the DBA has a plurality of metal plate islands. A sintered silver feature is disposed on one of the islands. A silvered backside of the die is directly bonded to the sintered silver structure of the DBA. The upper surface of the die includes a first aluminum pad (a source pad) and a second aluminum pad (a gate pad). A sintered silver structure is disposed on the first aluminum pad, but there is no sintered silver structure disposed on the second aluminum pad. A high current clip is attached via soft solder to the sintered silver structure on the first aluminum pad (the source pad). A bond wire is ultrasonically welded to the second aluminum pad (gate pad).
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: November 19, 2013
    Assignee: IXYS Corporation
    Inventor: Nathan Zommer
  • Patent number: 8574961
    Abstract: A semiconductor device (10) is made by mounting the bottom surfaces (31, 44, 54) of a semiconductor die (14) and a lead (15, 17) on a tape (12) and over a hole (19) in the tape. A vacuum is drawn through the hole to secure the die in place when the lead's top surface (43) is wirebonded to a top surface (32) of the semiconductor die. A molding material (49) is formed to encapsulate the top surface of the semiconductor die and to expose its bottom surface.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: November 5, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: James Howard Knapp, Jay A. Yoder, Harold G. Anderson
  • Patent number: 8574964
    Abstract: A semiconductor device has a flipchip type semiconductor die with contact pads and substrate with contact pads. A flux material is deposited over the contact pads of the semiconductor die and contact pads of the substrate. A solder tape formed as a continuous body of solder material with a plurality of recesses is disposed between the contact pads of the semiconductor die and substrate. The solder tape is brought to a liquidus state to separate a portion of the solder tape outside a footprint of the contact pads of the semiconductor die and substrate under surface tension and coalesce the solder material as an electrical interconnect substantially within the footprint of the contact pads of the semiconductor die and substrate. The contact pads on the semiconductor die and substrate can be formed with an extension or recess to increase surface area of the contact pads.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: November 5, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: SungWon Cho, TaeWoo Lee, DaeSik Choi, KyuWon Lee
  • Publication number: 20130277846
    Abstract: The circuit arrangement according to the invention provides a substrate (10), a connecting element (18) and a chip (16). The substrate (10) provides at least a partial metallisation (11) on its surface. The connecting element (18) is applied to the metallisation (11). The chip (16) is applied to the connecting element (18). The connecting element (18) provides an electrically non-conductive glass layer (14), which is applied directly to the metallisation (11), and an adhesive layer (15) between the chip (16) and the glass layer (14).
    Type: Application
    Filed: May 8, 2012
    Publication date: October 24, 2013
    Applicant: Rohde & Schwarz GmbH & Co. KG
    Inventor: Robert Ziegler
  • Publication number: 20130270694
    Abstract: Substrates and semiconductor chips are provided. The substrate or the semiconductor chip includes a body and a substantially pillar-shaped bump disposed on a first surface of the body. The pillar-shaped bump has a hole penetrating a portion thereof. Related semiconductor packages are also provided. Further, related methods are provided.
    Type: Application
    Filed: September 14, 2012
    Publication date: October 17, 2013
    Applicant: SK HYNIX INC.
    Inventors: In Chul HWANG, Il Hwan CHO, Ki Young KIM
  • Patent number: 8518748
    Abstract: A method and system for providing a laser diode submount for use in an energy assisted magnetic recording disk drive are described. A portion of a silicon substrate is removed, forming trenches therein. Each trench has sidewalls, surrounds a silicon island corresponding to a laser diode submount, and corresponds to a thickness of the laser diode submount. The silicon island has a top surface and a facets corresponding to the trench sidewalls. Insulator(s) for the top surface and facets of the silicon island are provided. Metallization is provided on the top surface and facets of the silicon island. A first portion of the metallization on the top surface corresponds to under bump metal (UBM) for solder pad(s). A second portion of the metallization corresponds to electrical traces. Solder pad(s) are provided on the UBM. The silicon island is released from the silicon substrate.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 27, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lei Wang, Zongrong Liu, Pezhman Monadgemi
  • Patent number: 8513062
    Abstract: A method includes providing a carrier having a first cavity, providing a dielectric foil with a metal layer attached to the dielectric foil, placing a first semiconductor chip in the first cavity of the carrier, and applying the dielectric foil to the carrier.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: August 20, 2013
    Assignee: Infineon Technologies AG
    Inventors: Ivan Nikitin, Joachim Mahler
  • Publication number: 20130207255
    Abstract: A method and apparatus for forming a backside contact, electrical and/or thermal, for die encapsulated in a semiconductor device package are provided. Die of varying thicknesses can be accommodated within the semiconductor device package. Embodiments of the present invention provide a conductive pedestal coupled to a backside contact of a die, where the coupling is performed prior to encapsulating the die within the package. In addition, conductive pedestals coupled to varying die within a semiconductor device package are of such a thickness that each conductive pedestal can be exposed on the back side of the package without exposing or damaging the backside of any encapsulated die. Embodiments of the present invention provide for the conductive pedestals being made of electrically or thermally conductive material and coupled to the device die contact using an electrically and/or thermally conductive adhesive.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Inventors: Alan J. Magnus, Carl E.D. Acosta, Douglas G. Mitchell, Justin E. Poarch
  • Patent number: 8501583
    Abstract: A resin containing a conductive particle and a gas bubble generating agent is supplied in a space between the substrates each having a plurality of electrodes. The resin is then heated to melt the conductive particle contained in the resin and generate gas bubbles from the gas bubble generating agent. A step portion is formed on at least one of the substrates. In the process of heating the resin, the resin is pushed aside by the growing gas bubbles, and as a result of that, the conductive particle contained in the resin is led to a space between the electrodes, and a connector is formed in the space. At the same time, the resin is led to a space between parts of the substrates at which the step portion is formed, and cured to fix the distance between the substrates.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: August 6, 2013
    Assignee: Panasonic Corporation
    Inventors: Takashi Kitae, Seiji Karashima, Susumu Sawada, Seiichi Nakatani
  • Patent number: 8501543
    Abstract: A method and structure provides a Direct Write Wafer Level Chip Scale Package (DWWLCSP) that utilizes permanent layers/coatings and direct write techniques to pattern these layers/coatings, thereby avoiding the use of photoimagable materials and photo-etching processes.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 6, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Christopher John Berry, Ronald Patrick Huemoeller, David Jon Hiner
  • Patent number: 8497164
    Abstract: A semiconductor die package. The semiconductor die package includes a premolded clip structure assembly having a clip structure, a semiconductor die attached to the clip structure, and a first molding material covering at least a portion of the clip structure and the semiconductor die. The semiconductor die package also includes a leadframe structure having a die attach pad, where the leadframe structure is attached to premolded clip structure assembly.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: July 30, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Armand Vincent C. Jereza, Paul Armand Calo, Erwin Victor R. Cruz
  • Patent number: 8492202
    Abstract: In a structure of a semiconductor device, a Si chip and a metal leadframe are jointed by metallic bond via a porous joint layer made of high conductive metal, having a three-dimensional network structure and using Ag as a bonding material, and a film containing Zn oxide or Al oxide is formed on a surface of a semiconductor assembly contacting to a polymer resin. In this manner, by the joint with the joint layer having the porous structure mainly made of Ag, thermal stress load of the Si chip can be reduced, and fatigue life of the joint layer itself can be improved. Besides, since adhesion of the polymer resin to the film can be enhanced by the anchor effect, occurrence of cracks in a bonding portion can be prevented, so that a highly-reliable Pb-free semiconductor device can be provided.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: July 23, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Ryoichi Kajiwara, Shigehisa Motowaki, Kazutoshi Ito, Toshiaki Ishii, Katsuo Arai, Takuya Nakajo, Hidemasa Kagii
  • Patent number: 8486764
    Abstract: A method of forming an electronic component package includes coupling a first surface of an electronic component to a first surface of a first dielectric strip, the electronic component comprising bond pads on the first surface; forming first via apertures through the first dielectric strip to expose the bond pads; and filling the first via apertures with an electrically conductive material to form first vias electrically coupled to the bond pads. The bond pads are directly connected to the corresponding first vias without the use of a solder and without the need to form a solder wetting layer on the bond pads.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: July 16, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Ronald Patrick Huemoeller, Sukianto Rusli, David Razu
  • Patent number: 8481370
    Abstract: The present invention provides a semiconductor device having a structure that can be mounted on a wiring substrate, as for the semiconductor device formed over a thin film-thickness substrate, a film-shaped substrate, or a sheet-like substrate. In addition, the present invention provides a method for manufacturing a semiconductor device that is capable of raising a reliability of mounting on a wiring substrate. One feature of the present invention is to bond a semiconductor element formed on a substrate having isolation to a member that a conductive film is formed via a medium having an anisotropic conductivity.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: July 9, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Hiroki Adachi, Naoto Kusumoto, Yuusuke Sugawara, Hidekazu Takahashi, Daiki Yamada, Yoshikazu Hiura
  • Publication number: 20130168866
    Abstract: In one embodiment, a chip-on-lead package structures includes an electronic chip having opposing major surfaces. One major surface of the electronic chip is attached to first and second leads. The one major surface is electrically connected to the first lead, and electrically isolated from the second lead. The other major surface where active device are formed may be electrically connected to the second lead.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 4, 2013
    Inventors: Atapol Prajuckamol, Bih Wen Fon, Jun Keat Lee
  • Publication number: 20130120948
    Abstract: The present invention provides a circuit component that enables satisfactory connection between a substrate and an IC chip and a method of making the same. The circuit component includes an IC chip and a substrate connected to each other using an electrically conductive adhesive containing electrically conductive particles. Bump electrodes and a non-electrode surface are provided on a mounting surface of the IC chip. The non-electrode surface is a portion of the mounting surface other than a portion where the bump electrodes are formed. Electrically conductive particles are placed in a first state between the surfaces of the substrate and the non-electrode surface so as to be in contact with both surfaces. Electrically conductive particles are placed in a second state between the surfaces of both the substrate and the bump electrodes, so as to be more flattened than the first state and dig into the bump electrodes.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 16, 2013
    Applicant: HITACHI CHEMICAL CO., LTD.
    Inventor: Hitachi Chemical Co., Ltd.
  • Patent number: 8435837
    Abstract: A packaged semiconductor die has a preformed lead frame with a central recessed portion, and a plurality of conductive leads. An integrated circuit die has a top surface and a bottom surface opposite thereto, with the top surface having a plurality of bonding pads for electrical connection to the die. The die is positioned in the central recessed portion with the top surface having the bonding pads facing upward, and the bottom surface in contact with the recessed portion. Each of the leads has a top portion and a bottom portion. The leads are spaced apart and insulated from the central recessed portion. A conductive layer is deposited on the top surface of the die and the top portion of the leads and is patterned to electrically connect certain of the bonding pads of the die to certain of the conductive leads. An insulator covers the conductive layer. The present invention also relates to a method of packaging such an integrated circuit die.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: May 7, 2013
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Chen Lung Tsai, Long-Ching Wang, Tze-Pin Lin
  • Publication number: 20130099369
    Abstract: A discrete semiconductor package includes a discrete semiconductor device disposed upon a non-conductive substrate, with via-connected upper and lower conductive ports. By utilizing a plurality of vias to connect the ports within the non-conductive substrate, and by depositing metals directly upon the surface of the substrate, manufacturing of such semiconductor packages is cheaper and more effective.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 25, 2013
    Applicant: SEMICOA CORPORATION
    Inventor: Semicoa Corporation
  • Patent number: 8409918
    Abstract: A semiconductor device has a substrate with a plurality of conductive vias formed through the substrate and conductive layer formed over the substrate. A first encapsulant is deposited over the substrate outside a die attach area of the substrate. The first encapsulant surrounds each die attach area over the substrate and the die attach area is devoid of the first encapsulant. A channel connecting adjacent die attach areas is also devoid of the first encapsulant. A first semiconductor die is mounted over the substrate within the die attach area after forming the first encapsulant. A second semiconductor die is mounted over the first die within the die attach area. An underfill material can be deposited under the first and second die. A second encapsulant is deposited over the first and second die and first encapsulant. The first encapsulant reduces warpage of the substrate during die mounting.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: April 2, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: DaeWook Yang, SeungWon Kim, MinJung Kim
  • Patent number: 8409928
    Abstract: The invention relates to a method for manufacturing contactless portable objects with an integrated circuit. The method of the invention is characterized in that it comprises the steps of: providing a silicon wafer (1) having integrated circuits (2) comprising plates (7) for connecting said circuits by capacitive coupling to the contact terminals of an antenna conductor circuit (5) provided at the surface of a dielectric substrate (4) of the contactless object; cutting the integrated circuits from said silicon wafer; grasping the integrated circuits using a gripping means of an integrated circuit transfer machine; and transferring the grasped integrated circuits onto the dielectric substrate so that the plates of said circuits are positioned substantially opposite the contact terminals of the antenna circuits. The invention can particularly be used for manufacturing UHF RFID objects.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: April 2, 2013
    Inventor: Yannick Grasset
  • Patent number: 8399997
    Abstract: In one embodiment, a method includes attaching a film to cover a first portion of a first semiconductor die. The first semiconductor die is attached, using the tape, to a lead frame using a first bonding method. The first bonding method places the film between the lead frame and the semiconductor die. A second semiconductor die is attached to the lead frame using a second bonding method. The second bonding method bonds the lead frame and the semiconductor die. The first semiconductor device and the second semiconductor device are encapsulated into a semiconductor package.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 19, 2013
    Assignee: Shanghai Kalhong Electronic Company Limited
    Inventors: Jiangyuan Zhang, Elite Lee, Dana Liu
  • Publication number: 20130050972
    Abstract: An interconnection element is disclosed that includes a plurality of drawn metal conductors, a dielectric layer, and opposed surfaces having a plurality of wettable contacts thereon. The conductors may include grains having lengths oriented in a direction between the first and second ends of the conductors. A dielectric layer for insulating the conductors may have first and second opposed surfaces and a thickness less than 1 millimeter between the first and second surface. One or more conductors may be configured to carry a signal to or from a microelectronic element. First and second wettable contacts may be used to bond the interconnection element to at least one of a microelectronic element and a circuit panel. The wettable contacts may match a spatial distribution of element contacts at a face of a microelectronic element or of circuit contacts exposed at a face of component other than the microelectronic element.
    Type: Application
    Filed: August 23, 2011
    Publication date: February 28, 2013
    Applicant: TESSERA, INC.
    Inventors: Ilyas Mohammed, Belgacem Haba
  • Publication number: 20130049183
    Abstract: A method of packaging a power semiconductor die includes providing a first lead frame of a dual gauge lead frame. The first lead frame includes a thick die pad. A tape is attached to a first side of the thick die pad and the power die is attached to a second side of the thick die pad. A second lead frame of the dual gauge lead frame is provided. The second lead frame has thin lead fingers. One end of the lead fingers is attached to an active surface of the power die such that the lead fingers are electrically connected to bonding pads of the power die. A molding compound is then dispensed onto a top surface of the dual gauge lead frame such that the molding compound covers the power die and the lead fingers.
    Type: Application
    Filed: July 16, 2012
    Publication date: February 28, 2013
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Jinzhong YAO, Zhigang Bai, Xuesong Xu
  • Patent number: 8378506
    Abstract: A method of assembling an electronic device and electronic packages therefrom. A die attach adhesive precursor is placed between a top surface of a workpiece and an IC die. The die attach adhesive precursor includes metal particles, a first plurality of first microcapsules having a polymerizable material inside, and a second plurality of second microcapsules having a polymerization agent inside to form a first polymer upon rupture of first and second microcapsules. A force sufficient to rupture at least a portion of the first plurality of first microcapsules and at least a portion of the second plurality of second microcapsules is applied to form a self-healing die attach adhesive wherein the first polymer binds the plurality of metal particles and the remaining microcapsules and secures the IC die to the top surface of the workpiece. The self-healing die attach adhesive generally includes at least 90 vol. % metal.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: February 19, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: James C Wainerdi, John P Tellkamp
  • Patent number: 8372694
    Abstract: A substrate is provided with electrical connection pads on a front face and on a rear face, the front pads and rear pads being selectively connected via a network passing through the substrate. A peripheral edge of the substrate is mounted on a rigid annular frame and the rearm face secured to a suction table. A layer of a dielectric sealant containing electrically conductive particles is deposited on the front face and front pads of the substrate. Integrated-circuit chips are positioned on the front face to flatten the layer of dielectric sealant, the included electrically conductive particles making electrical connection between pads of the integrated-circuit and the front pads of the substrate. The resulting assembly in then encapsulated in a block of encapsulating material positioned on top of the front face of the substrate. The block is then diced in order to obtain a plurality of semiconductor packages.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: February 12, 2013
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventor: Julien Vittu
  • Publication number: 20130020709
    Abstract: A semiconductor package and a method of fabricating the same. The semiconductor package includes a carrier having a plurality bonding pads disposed on a surface thereof, a packaging layer formed on the surface of the carrier and having a plurality of openings corresponding to the bonding pads, a conductive material filled in the openings and electrically connected to the bonding pads, and an electronic component installed on the packaging layer and having a plurality of conductive pillars correspondingly received in the openings and electrically connected to the conductive material. The formation of the openings in the packaging layer can control the position and size of the conductive material to enable the overall height of the conductive structure to be level and to keep the electronic component from tilting.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 24, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chun-An Huang, Pin-Cheng Huang, Chi-Hsin Chiu, Shih-Kuang Chiu
  • Publication number: 20130017652
    Abstract: Embodiments of the present invention relate to forming semiconductor device package with a heat sink. In one embodiment, a subassembly comprising a die attached to a lead frame is formed, a heat sink is provided in a molding cavity, and the subassembly is coupled to the heat sink while the heat sink is in the molding cavity. In certain embodiments, a second component of the lead frame can be substituted for the heat sink. Such techniques can simplify the manufacturing process for semiconductor packages having a heat sink or lead frame with a second component.
    Type: Application
    Filed: January 11, 2012
    Publication date: January 17, 2013
    Applicant: GEM Services, Inc.
    Inventors: Anthony C. Tsui, Hongbo Yang, Ming Zhou, Weibing Chu, Anthony Chia
  • Patent number: 8354747
    Abstract: A semiconductor device has a base substrate having a plurality of metal traces. A conductive polymer cover is provided having an opening. The conductive polymer cover forms a cavity when attached to the base substrate. At least one die is attached to an interior surface of the conductive polymer cover and positioned over the opening. The conductive polymer cover and the at least one die are electrically coupled to metal traces on the first surface of the base substrate.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: January 15, 2013
    Assignee: Amkor Technology, Inc
    Inventor: Bob Shih-Wei Kuo
  • Publication number: 20120328303
    Abstract: A protective coating encapsulates bond pads disposed on a substrate of an optical communications module and extends in between the bond pads. The protective coating has characteristics that (1) increase the dielectric resistances between adjacent bond pads on the substrate, (2) protect the bond pads from moisture in the environment, and (3) prevents, or at least reduces, ion migration between adjacent bond pads. In this way, the protective coating prevents, or at least reduces, corrosion growth that can lead to impedance degradation and electrical shorts between adjacent bond pads.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 27, 2012
    Applicant: AVAGO TECHNOLOGIES FIBER IP (SINGAPORE) PTE. LTD.
    Inventors: Goh Han Peng, Phang Kah Yuan, De Mesa Eduardo Alicaya
  • Publication number: 20120326291
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a substrate; attaching a flip chip to the substrate; attaching a heat slug to the substrate and the flip chip; and forming a moldable underfill having a top underfill surface on the substrate, the flip chip, and the heat slug, the moldable underfill having a characteristic of being liquid at room temperature and the top underfill surface over the flip chip.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Inventors: DaeSik Choi, Oh Han Kim, Jung SeIl
  • Patent number: 8338234
    Abstract: A method of manufacturing a hybrid integrated circuit device of the present invention includes the steps of preparing a lead frame which constituted by units each having a plurality of leads, and fixing a circuit substrate on each unit of the lead frame by fixing pads which are formed on the surface of the circuit substrate to the leads, where a space between a first pad which is formed at an end edge of the circuit substrate and a second pad which is adjacent to the first pad is set narrower than a space between the pads themselves.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: December 25, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Junichi Iimura, Yasuhiro Koike, Soichi Izutani
  • Publication number: 20120313253
    Abstract: A microelectronic package includes a microelectronic unit and a substrate. The microelectronic unit includes a microelectronic element having contacts on a front face. A dielectric material has a first surface substantially flush with the front face of the microelectronic element. Conductive traces have at least portions extending along the front face away from the contacts, at least some of which also extend along the first surface of the dielectric material. Contacts are connected with the traces, at least some of which are disposed at the first surface of the dielectric material. The substrate has first and second opposed surfaces and an edge extending therebetween, the first surface facing the front face of the microelectronic unit, and the second surface having a plurality of terminals thereon configured for electrical connection with at least one external component. Masses of conductive matrix material join the terminals with the redistribution contacts.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Applicant: c/o Tessera, Inc.
    Inventors: Yoshikuni Nakadaira, Norihito Masuda, Belgacem Haba, Ilyas Mohammed, Philip Damberg, Hiroaki Sato, Kiyoaki Hashimoto
  • Patent number: 8329493
    Abstract: A stretchable electronic circuit that includes a stretchable base substrate having a plurality of stretchable conductors formed onto a surface thereof, with both the stretchable base substrate and conductors being bendable together about two orthogonal axes. The stretchable circuit also includes a stretchable sensor layer attached to the base substrate with a cavity formed therein which has a contact point exposing one of the plurality of stretchable conductors. The stretchable electronic circuit further includes a surface mount device (SMD) package with a conductor contact protrusion installed into the cavity, and wherein a substantially constant electrical connection is established between the conductor contact protrusion and the stretchable conductor at the contact point by tensile forces interacting between the stretchable base substrate and the stretchable sensor layer.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: December 11, 2012
    Assignee: University of Utah Research Foundation
    Inventors: Stephen Mascaro, Debra Mascaro, Jumana Abu-Khalaf, Jungwoo Park
  • Publication number: 20120306105
    Abstract: In one embodiment, a method for forming a multi-component power structure for use in electrically propelled vehicles may include constraining a parent material system between a power component and a thermal device. The parent material system may include a low temperature material having a relatively low melting point and a high temperature material having a relatively high melting point. The relatively low melting point may be less than the relatively high melting point. The parent material system can be heated to a melting temperature greater than the relatively low melting point and lower than the relatively high melting point to diffuse the low temperature material into the high temperature material. The parent material system can be solidified to form a transient liquid phase bond that is electrically and thermally conductive.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 6, 2012
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Brian Joseph Robert
  • Publication number: 20120306078
    Abstract: An integrated circuit packaging system includes: providing a substrate; mounting an integrated circuit above the substrate; connecting an interposer to the integrated circuit with a wire-in-film adhesive; connecting an exposed interconnect having an upper surface to the substrate; and encapsulating the integrated circuit with an encapsulation.
    Type: Application
    Filed: August 17, 2012
    Publication date: December 6, 2012
    Inventors: Reza Argenty Pagaila, Byung Tai Do, Linda Pei Ee Chua
  • Publication number: 20120306092
    Abstract: An assembly and method of making same are provided. The assembly can include a first component including a dielectric region having an exposed surface, a conductive pad at the surface defined by a conductive element having at least a portion extending in an oscillating or spiral path along the surface, and a an electrically conductive bonding material joined to the conductive pad and bridging an exposed portion of the dielectric surface between adjacent segments. The conductive pad can permit electrical interconnection of the first component with a second component having a terminal joined to the pad through the electrically conductive bonding material. The path of the conductive element may or may not overlap or cross itself.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 6, 2012
    Applicant: TESSERA, INC.
    Inventor: Belgacem Haba
  • Patent number: 8304878
    Abstract: An embedded electronic component semiconductor package structure and a packaging process thereof are provided. By providing two or more preformed building blocks, the electronic component can be assembled to the joined building blocks to obtain the embedded component semiconductor package structure.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: November 6, 2012
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Bernd Karl Appelt
  • Publication number: 20120273926
    Abstract: A semiconductor wafer contains a plurality of semiconductor die separated by a non-active area of the semiconductor wafer. A plurality of contact pads is formed on an active surface of the semiconductor die. A first insulating layer is formed over the semiconductor wafer. A portion of the first insulating layer is removed to expose the contact pads on the semiconductor die. An opening is formed partially through the semiconductor wafer in the active surface of the semiconductor die or in the non-active area of the semiconductor wafer. A second insulating layer is formed in the opening in the semiconductor wafer. A shielding layer is formed over the active surface. The shielding layer extends into the opening of the semiconductor wafer to form a conductive via. A portion of a back surface of the semiconductor wafer is removed to singulate the semiconductor die.
    Type: Application
    Filed: April 30, 2011
    Publication date: November 1, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Reza A. Pagaila
  • Patent number: 8298866
    Abstract: A method of forming an electronic component package includes coupling a first surface of an electronic component to a first surface of a first dielectric strip, the electronic component comprising bond pads on the first surface; forming first via apertures through the first dielectric strip to expose the bond pads; and filling the first via apertures with an electrically conductive material to form first vias electrically coupled to the bond pads. The bond pads are directly connected to the corresponding first vias without the use of a solder and without the need to form a solder wetting layer on the bond pads.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: October 30, 2012
    Assignee: Amkor Technology, Inc.
    Inventors: Ronald Patrick Huemoeller, Sukianto Rusli, David Razu
  • Patent number: 8293586
    Abstract: A method of manufacturing an electronic system. One embodiment provides a semiconductor chip having a first main face and a second main face opposite to the first main face. A mask is applied to the first main face of the semiconductor chip. A compound is applied to the first main face of the semiconductor chip. The compound includes electronically conductive particles. The semiconductor chip is coupled to a carrier with the compound facing the carrier.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: October 23, 2012
    Assignee: Infineon Technologies AG
    Inventor: Ivan Nikitin
  • Patent number: 8288200
    Abstract: A semiconductor device is described that includes a die connected between a conductive platform and a conductive clip. The semiconductor device is formed by a process that includes mounting a first surface of each of multiple die to each of a number of conductive mounting platforms of a lead frame structure. The process also mounts a clip structure to the lead frame structure, the clip structure including a number of conductive clips. Mounting of the clip structure to the lead frame structure includes aligning each of the conductive clips with corresponding ones of the conductive mounting platforms so that a portion of each of the conductive clips contacts a second surface of a corresponding die.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: October 16, 2012
    Assignee: Diodes Inc.
    Inventor: Tan Xiaochun
  • Patent number: 8283783
    Abstract: A zinc based solder material 55 of the present invention is prepared by providing on the surface of a zinc based material 50, from which an oxide film 501 has been removed or at which an oxide film 501 does not exist, with a coating layer 51 containing primarily a metal whose oxide is more easily reducible than the oxide film 501. In a joined body and a power semiconductor module of the present invention, the zinc based solder material 55 is used in the joining portion, and after joining, the coating layer 51 does not exist.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: October 9, 2012
    Assignees: Toyota Jidosha Kabushiki Kaisha, Tohoku University
    Inventors: Yasushi Yamada, Yuji Yagi, Yoshikazu Takaku, Ikuo Ohnuma, Kiyohito Ishida, Takashi Atsumi, Ikuo Nakagawa, Mikio Shirai
  • Patent number: 8278153
    Abstract: The present invention includes a temporary fixing step of temporarily fixing a semiconductor element on an adherend interposing an adhesive sheet therebetween, a wire-bonding step of bonding wires to the semiconductor element, and a step of sealing the semiconductor element with a sealing resin, and in which the loss elastic modulus of the adhesive sheet at 175° C. is 2000 Pa or more.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: October 2, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Sadahito Misumi, Takeshi Matsumura, Kazuhito Hosokawa, Hiroyuki Kondo
  • Patent number: 8278146
    Abstract: A chip package includes a substrate, an integrated circuit proximate a top surface of the substrate, and a cap comprising encapsulant that encapsulates the integrated circuit on at least a portion of the top surface of the substrate. The chip package further includes at least one extension feature positioned on at least a portion of the top surface of the substrate. The at least one extension feature also comprises the encapsulant and extends from the cap to a perimeter of the substrate.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: October 2, 2012
    Assignee: STMicroelectronics Asia Pacific Pte Ltd
    Inventor: Jing-en Luan
  • Patent number: 8269357
    Abstract: A microelectronic assembly can include a microelectronic device having device contacts exposed at a surface thereof and an interconnection element having element contacts and having a face adjacent to the microelectronic device. Conductive elements, e.g., wirebonds connect the device contacts with the element contacts and have portions extending in runs above the surface of the microelectronic device. A conductive layer has a conductive surface disposed at least a substantially uniform distance above or below the plurality of the runs of the conductive elements. In some cases, the conductive material can have first and second dimensions in first and second horizontal directions which are smaller than first and second corresponding dimensions of the microelectronic device. The conductive material is connectable to a source of reference potential so as to achieve a desired impedance for the conductive elements.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: September 18, 2012
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Brian Marcucci
  • Publication number: 20120228768
    Abstract: An integrated circuit packaging system and method of manufacture thereof includes: a substrate having a bond pad; a B-stage polymer, having a dispersion of conductive particles therein, on the bond pad; and a bond ball inserted into the B-stage polymer for forming intermetallic structures between the bond ball and the bond pad.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 13, 2012
    Inventors: Reza Argenty Pagaila, Soo Jung Park, HeeJo Chi