Electrically Conductive Adhesive Patents (Class 438/119)
  • Patent number: 7955900
    Abstract: Some embodiments of the invention include a coated thermal interface to bond a die with a heat spreader. The coated thermal interface may be used to bond the die with the heat spreader without flux. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: June 7, 2011
    Assignee: Intel Corporation
    Inventors: Susheel G. Jadhav, Carl Deppisch
  • Patent number: 7955898
    Abstract: Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices are disclosed. In one embodiment, a method for forming a microelectronic device includes attaching a microelectronic die to a support member by forming an attachment feature on at least one of a back side of the microelectronic die and the support member. The attachment feature includes a volume of solder material. The method also includes contacting the attachment feature with the other of the microelectronic die and the support member, and reflowing the solder material to join the back side of the die and the support member via the attachment feature. In several embodiments, the attachment feature is not electrically connected to internal active structures of the die.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: June 7, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Matt E. Schwab, J. Michael Brooks, David J. Corisis
  • Patent number: 7951644
    Abstract: A semiconductor device and a method for fabricating the same, including: a substrate having a mounting surface formed with a plurality of bonding fingers and covered with an insulating layer, the insulating layer having an opening formed therein for exposing the bonding fingers; and a chip coupled to the substrate and including a body, a self-adhesive protective layer, and a plurality of bumps protruding from the self-adhesive protective layer. The self-adhesive protective layer is formed on the chip but leaves the bumps exposed. The self-adhesive protective layer is made of a photosensitive adhesive, thermosetting adhesive, or dielectric material. The chip is coupled to the substrate via the self-adhesive protective layer, thus allowing the bumps to be electrically connected to the bonding fingers and at least an end of the opening to be exposed. The method enables a more streamlined manufacturing process and lower fabrication costs by dispensing with adhesive dispensing.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: May 31, 2011
    Assignee: United Test Center Inc.
    Inventor: Shiann-Tsong Tsai
  • Patent number: 7952198
    Abstract: A BGA package primarily includes a leadless leadframe with a plurality of leads, a chip disposed on the leads, a die-attaching layer adhering to an active surface of the chip and the top surfaces of the leads, a plurality of bonding wires electrically connecting the chip to the leads, an encapsulant, and a plurality of solder balls. Each lead has a bottom surface including a wire-bonding area and a ball-placement area, moreover, a plurality of lips project from the bottom surfaces of the leads around the ball-placement areas. The encapsulant encapsulates the chip, the bonding wires, the die-attaching layer, and the top surfaces, the bottom surfaces except the ball-placement areas. The solder balls are disposed on the ball-placement areas.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: May 31, 2011
    Assignees: ChipMos Technologies (Bermuda) Ltd., ChipMos Technologies Inc.
    Inventor: Hung-Tsun Lin
  • Patent number: 7951649
    Abstract: The invention relates to the collective fabrication of n 3D module. It comprises a step of fabricating a batch of n dies i at one and the same thin plane wafer (10) of thickness es comprising silicon, covered on one face with electrical connection pads (20), called test pads, and then with a thin electrically insulating layer (4) of thickness ei, forming the insulating substrate provided with at least one silicon electronic component (11) having connection pads (2) connected to the test pads (20) through the insulating layer.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: May 31, 2011
    Assignee: 3D Plus
    Inventor: Christian Val
  • Patent number: 7947532
    Abstract: A power semiconductor device and a method for its production. The power semiconductor device has at least one power semiconductor chip, which has on its top side and on its back side large-area electrodes. The electrodes are electrically in connection with external contacts by means of connecting elements, the power semiconductor chip and the connecting elements being embedded in a plastic package. This plastic package has a number of layers of plastic, which are pressed one on top of the other and have plane-parallel upper sides. The connecting elements are arranged on at least one of the plane-parallel upper sides, between the layers of plastic pressed one on top of the other, as a patterned metal layer and are electrically in connection with the external contacts by means of contact vias through at least one of the layers of plastic.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 24, 2011
    Assignee: Infineon Technologies AG
    Inventors: Ralf Otremba, Helmut Strack
  • Patent number: 7939376
    Abstract: A semiconductor die is attached to a packaging substrate by a patterned layer of conductive metal that includes voids. The voids provide a space into which the metal may expand when heated in order to avoid placing mechanical stress on the bonds caused by mismatches in the thermal coefficients of thermal expansion of the die, the conductive metal bond layer and the substrate. An additional coating of conductive metal may be flowed over the bond lines to reinforce the bonds.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: May 10, 2011
    Assignees: The Boeing Company, Auburn University
    Inventors: Leora Peltz, Wayne Johnson
  • Publication number: 20110101533
    Abstract: A process of forming a semiconductor integrated circuit that includes the steps of: forming at least a first element having a first pattern of conductive material and including a polymer layer surrounding the conductive material, forming at least a second element having a second pattern of conductive material and including a polymer layer surrounding the conductive material, positioning the first element relative to the second element, and bonding the polymer layer of the first and second elements at a temperature below a melting temperature of the conductive materials of the first and second elements wherein the conductive material of the first element contacts the conductive material of the second element and is maintained in position by the bonded polymer layers.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Inventors: Sang Won Yoon, Alexandros Margomenos
  • Patent number: 7935892
    Abstract: Circuit board having conductor wiring and connection terminal; anisotropic conductive resin layer provided on one surface of circuit board; and plurality of electronic components respectively provided with electrode terminals in positions facing the connection terminal are included. The anisotropic conductive resin layer includes at least one kind of conductive particles selected from coiled conductive particles, fiber fluff conductive particles and conductive particles provided with a plurality of conductive protrusions, and resin binder; electrically couples electrode terminals of plurality of electronic components to connection terminals to each other with conductive particles; mechanically fixes electronic components and circuit board to each other; and protects conductor wiring.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: May 3, 2011
    Assignee: Panasonic Corporation
    Inventors: Kazuhiro Nishikawa, Hidenori Miyakawa, Norihito Tsukahara, Shigeaki Sakatani
  • Patent number: 7923293
    Abstract: A method for manufacturing a semiconductor device includes: (a) transferring an electronic component that has an electrode and formed on a first substrate from the first substrate to a second substrate; and (b) forming a wiring line electrically coupling the electrode and a terminal on the second substrate. A cavity is provided between the electrode of the electronic component transferred on the second substrate and the second substrate, and the wiring line is formed in the cavity.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: April 12, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Chiharu Iriguchi
  • Patent number: 7918381
    Abstract: The present invention relates to a method and apparatus for mounting electrical components to electric circuit boards. Specifically, the present invention relates to a method for mounting electrical components having near-zero standoff height to electrical printed circuit boards.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: April 5, 2011
    Assignee: Delphi Technologies, Inc.
    Inventors: Michael R. Witty, David W. Ihms, Joel D. Hunt
  • Patent number: 7908745
    Abstract: An intermediate layer 38 is provided on a die pad 22 of an IC chip 20 and integrated into a multilayer printed circuit board 10. Due to this, it is possible to electrically connect the IC chip 20 to the multilayer printed circuit board 10 without using lead members and a sealing resin. Also, by providing the intermediate layer 38 made of copper on an aluminum pad 24, it is possible to prevent a resin residue on the pad 24 and to improve connection characteristics between the die pad 24 and a via hole 60 and reliability.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: March 22, 2011
    Assignee: Ibiden Co., Ltd.
    Inventors: Hajime Sakamoto, Dongdong Wang
  • Patent number: 7910899
    Abstract: A flat UV light source has a tight packing of UV light-emitting diodes (56) that are arranged in a matrix. These light-emitting diodes are cooled by cooling air flows (66) or by cooling water flows.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: March 22, 2011
    Assignee: Platsch GmbH & Co. KG
    Inventor: Hans G. Platsch
  • Patent number: 7910402
    Abstract: For a suppressed breakage after a flip chip connection of a semiconductor device using a low-permittivity insulation film and a lead-free solder together, with an enhanced production yield, bump electrodes (2) are heated by a temperature profile having, after a heating up to a melting point of the bump electrodes (2) or more, a cooling in which a temperature within a range of 190 to 210° C. is kept for an interval of time within a range of 3 to 15 minutes, and a condition is met, such that 1.4<Lb/La<1.6, where La is a diameter of second electrode pads (33), and Lb is a diameter of first electrode pads (13).
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: March 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Uchida, Hisashi Ito, Kazuhito Higuchi, Takashi Togasaki
  • Patent number: 7911057
    Abstract: Consistent with an example embodiment, an integrated circuit device (IC) is assembled on a package substrate and encapsulated in a molding compound. There is a semiconductor die having a circuit pattern with contact pads. A package substrate having bump pad landings corresponding to the contact pads of the circuit pattern, has an interposer layer sandwiched between them. The interposer layer includes randomly distributed mutually isolated conductive columns of spherical particles embedded in an elastomeric material, wherein the interposer layer is subjected to a compressive force from pressure exerted upon an underside surface of the semiconductor die. The compressive force deforms the interposer layer causing the conductive columns of spherical particles to electrically connect the contact pads of the circuit pattern with the corresponding bump pad landings of the package substrate.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: March 22, 2011
    Assignee: NXP B.V.
    Inventor: Wayne Nunn
  • Patent number: 7906857
    Abstract: A molded integrated circuit package is described. The molded integrated circuit package comprises a substrate having a plurality of contacts on a first surface; a die having a plurality of solder bumps on a first surface, the plurality of solder bumps being coupled to the plurality of contacts on the first surface of the substrate; an adhesive material positioned on a second surface of the die; a lid attached to the adhesive material; and an encapsulant positioned between the lid and the substrate. Methods of forming molded integrated circuit packages are also disclosed.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: March 15, 2011
    Assignee: Xilinx, Inc.
    Inventors: Lan H. Hoang, Raghunandan Chaware, Laurene Yip
  • Publication number: 20110049729
    Abstract: A method generates at least one electrical connection from at least one electronic component, which is positioned on a substrate inside an encapsulation, to outside the encapsulation. The functional capability of the electrical connection is to be provided at ambient temperatures greater than 140° C. and in the event of large power losses and extreme environmental influences. A reactive nanofilm, having targeted reaction, which can be triggered exothermically by laser, is used to produce hermetically sealed electrical connections. Using the nanofilm, an output of an electrical connection and a contact of the electrical connection to at least one further electrical contact can be provided.
    Type: Application
    Filed: April 28, 2009
    Publication date: March 3, 2011
    Applicant: Siemens Aktiengesellschaft
    Inventors: Jörg Naundorf, Hans Wulkesch
  • Publication number: 20110045640
    Abstract: A system for bonding electrical devices using an electrically conductive adhesive to adhere the electrical devices together, the system comprising: an ultrasonic transducer to generate an ultrasonic vibration; and an ultrasonic to thermal energy apparatus operatively attached to and covering an operational end of the ultrasonic transducer, the ultrasonic to thermal energy apparatus damping the ultrasonic vibration to minimize ultrasonic vibration transmitted to a first electrical device and causing the conversion of the ultrasonic vibration to a heating pulse which is conducted through the first electrical device to the adhesive; wherein the adhesive is softened by the heating pulse to bond the electrical devices together.
    Type: Application
    Filed: August 24, 2009
    Publication date: February 24, 2011
    Inventor: Derek Siu Wing Or
  • Publication number: 20110042774
    Abstract: A film sensor having a first carrier film with at least one first conductor track is disclosed. The film sensor has a second carrier film which has at least one second conductor track. At least one electrical component is arranged between the first carrier film and the second carrier film. The electrical component has the properties of a functional ceramic. The electrical component is electrically contact-connected by means of at least one first conductor track and at least one second conductor track.
    Type: Application
    Filed: August 24, 2010
    Publication date: February 24, 2011
    Inventors: Gerald Kloiber, Heinz Strallhofer, Joerg Haut, Lutz Kirsten
  • Patent number: 7893532
    Abstract: An external contact material for external contacts of a semiconductor device and a method for producing the same are described. The external contact material includes a lead-free solder material. Provided in the solder material is a filler which forms a plurality of gas pores and/or has plastic particles which are arranged in the volume of the solder material.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: February 22, 2011
    Assignee: Infineon Technologies AG
    Inventors: Michael Bauer, Irmgard Escher-Poeppel, Edward Fuergut, Simon Jerebic, Bernd Rakow, Peter Strobel, Holger Woerner
  • Patent number: 7888182
    Abstract: An electronic component having an element body having at least one plane, and a terminal electrode to be electrically connected through an electroconductive particle to a circuit substrate. The terminal electrode is formed on the plane of the element body. When the plane of the element body is defined as a reference plane, a ratio of a projected area onto the reference plane of an external surface of the terminal electrode opposed to the circuit substrate in a region where a height of the terminal electrode from the reference plane is not less than a value resulting from subtraction of a diameter of the electroconductive particle from a maximum of the height, to a projected area onto the reference plane of the external surface of the terminal electrode opposed to the circuit substrate is set to be not less than 10%.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: February 15, 2011
    Assignee: TDK Corporation
    Inventors: Shinya Onodera, Mikio Tsuruoka
  • Patent number: 7879650
    Abstract: In a method of fabricating a CMOS structure, a bulk device can be formed in a first region in conductive communication with an underlying bulk region of the substrate. A first gate conductor may overlie the first region. An SOI device can be formed which has a source drain conduction path in a SOI layer, i.e., a semiconductor layer that is separated from the bulk region by a buried dielectric region. The crystal orientations of the SOI layer and the bulk region can be different. A first diode can be formed in a second region of the substrate in conductive communication with the bulk region. The first diode may be connected in a reverse-biased orientation to a first gate conductor above the SOI layer, such that a voltage on the gate conductor that exceeds the breakdown voltage can be discharged through the first diode to the bulk region of the substrate. A second diode may be formed in a third region of the substrate in conductive communication with the bulk region.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Terence B. Hook, Anda C. Mocuta, Jeffrey W. Sleight, Anthony K. Stamper
  • Patent number: 7875528
    Abstract: A method, system and program product for bonding two circuitry-including semiconductor substrates, and a related stage, are disclosed. In one embodiment, a method of bonding two circuitry-including substrates includes: providing a first stage for holding a first circuitry-including substrate and a second stage for holding a second circuitry-including substrate; identifying an alignment mark on each substrate; determining a location and a topography of each alignment mark using laser diffraction; creating an alignment model for each substrate based on the location and topography the alignment mark thereon; and bonding the first and second circuitry-including substrates together while aligning the first and second substrate based on the alignment model.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: January 25, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas C. La Tulipe, Jr., Steven E. Steen, Anna W. Topol
  • Publication number: 20110012262
    Abstract: A semiconductor device wherein a semiconductor element made of Si or Si group material mounted on a substrate, the semiconductor element is mounted on the substrate and the semiconductor element is bonded to a silver bonding material via a oxide film formed on the semiconductor element. The bonding material comprising silver oxide particles having an average particle size of 1 nm to 50 nm and an organic reducing agent is used for bonding in air, which gives a high bonding strength to the oxide on the semiconductor element.
    Type: Application
    Filed: June 29, 2010
    Publication date: January 20, 2011
    Inventors: Toshiaki MORITA, Yusuke Yasuda, Eiichi Ide
  • Patent number: 7863106
    Abstract: A testing method for a silicon interposer employs a test probe and an electrically conductive glass handler. The silicon interposer includes multiple interconnects that extend between the opposed major surfaces of the interposer, namely from a test side of the interposer to a conductive glass handler side of the interposer. On the glass handler side, the interposer includes a layer of patterned insulative resist with open regions at some interconnects on the glass handler side and remaining resist regions at other interconnects on the glass handler side. The interposer may include a conductive adhesive layer that couples together interconnects at the open regions on the glass handler side. In this manner, a probe may send a test signal from a first interconnect at one location on the test side of the interposer, through the first interconnect, through the conductive adhesive, through a second interconnect to another probe on the test side of the interposer.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Michael Anthony Christo, Julio Alejandro Maldonado, Roger Donell Weekly, Tingdong Zhou
  • Patent number: 7858438
    Abstract: A semiconductor device has a chip, a first bump electrode, a conductive wire and a second bump electrode. The chip has at least one contact pad, and the first bump electrode is formed on the contact pad. The conductive wire is disposed on an active surface of the chip and electrically connected to the first bump electrode. The second bump electrode is formed on the conductive wire, and the second bump electrode is not disposed over any contact pad of the chip. In addition, a method for packaging a chip and an IC package are also disclosed.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: December 28, 2010
    Assignee: Himax Technologies Limited
    Inventors: Chien-Ru Chen, Ying-Lieh Chen
  • Patent number: 7854366
    Abstract: A method of mounting a conductive ball according to the present invention includes the steps of, disposing a mask on a substrate including connection pads, the mask having opening portions corresponding to the connection pad, supplying conductive balls on the mask, arranging the conductive balls on the connection pad of the substrate through the opening portions of the mask by moving the conductive balls to one end side of the mask by ball moving member (a brush), and removing excess conductive balls remaining on a region of the mask where the opening portions are provided, by bonding the excess conductive balls to a ball removal film (adhesive film).
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: December 21, 2010
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Hideaki Sakaguchi, Kiyoaki Iida
  • Patent number: 7855103
    Abstract: A wirebond structure includes a copper pad formed on or in a surface of a microelectronic die. A conductive layer is included in contact with the copper pad and a bond wire is bonded to the conductive layer. The conductive layer is formed of a material to provide a stable contact between the bond wire and the copper pad in at least one of an oxidizing environment and an environment with temperatures up to at least about 350° C.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: December 21, 2010
    Assignee: Intel Corporation
    Inventors: Robert J. Gleixner, Donald Danielson, Patrick M. Paluda, Rajan Naik
  • Publication number: 20100314719
    Abstract: The present invention discloses methods and apparatuses for the separations of IC fabrication and assembling of separated IC components to form complete IC structures. In an embodiment, the present fabrication separation of an IC structure into multiple discrete components can take advantages of dedicated IC fabrication facilities and achieve more cost effective products. In another embodiment, the present chip assembling provides high density interconnect wires between bond pads, enabling cost-effective assembling of small chip components. In an aspect, the present process provides multiple interconnect wires in the form of a ribbon between the bond pads, and then subsequently separates the ribbon into multiple individual interconnect wires.
    Type: Application
    Filed: June 14, 2009
    Publication date: December 16, 2010
    Applicant: TEREPAC
    Inventor: Jayna Sheats
  • Publication number: 20100314734
    Abstract: The present invention discloses methods and apparatuses for the separations of IC fabrication and assembling of separated IC components to form complete IC structures. In an embodiment, the present fabrication separation of an IC structure into multiple discrete components can take advantages of dedicated IC fabrication facilities and achieve more cost effective products. In another embodiment, the present chip assembling provides high density interconnect wires between bond pads, enabling cost-effective assembling of small chip components. In an aspect, the present process bonds multiple interconnect wires to bond pads with electrical linkages between the bond pads and then subsequently separates the adjacent bond pads.
    Type: Application
    Filed: June 14, 2009
    Publication date: December 16, 2010
    Applicant: TEREPAC
    Inventor: Jayna Sheats
  • Patent number: 7851263
    Abstract: A method of manufacturing a semiconductor device including (1) providing a metal plate having an upper surface and a back surface, the metal plate including a plurality of lids disposed in matrix, which are defined by a first groove formed from the upper surface, (2) providing a ceramic sheet having an upper surface and a back surface, the ceramic sheet including a plurality of headers disposed in matrix, which are defined by a second groove formed from the back surface, (3) fixing the metal plate on the ceramic sheet by facing the back surface of the metal plate to the upper surface of the ceramic sheet, wherein the first groove is aligned with the second groove, and (4) dividing the metal plate and the ceramic sheet along the first and the second grooves.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 14, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Kenji Fuchinoue
  • Publication number: 20100308457
    Abstract: Provided is a semiconductor apparatus that reduces on-resistance in wiring between a first electrode terminal and a second electrode terminal. The semiconductor apparatus includes the first electrode terminal, the second electrode terminal, and at least two wires that connect the first and second electrode terminals. At least two wires are electrically connected with each other by using a conductive adhesive in an extending direction of the wires. The first electrode terminal is a terminal of an external lead electrode, for example. The second electrode terminal is a terminal of a source electrode of a MOSFET, for example.
    Type: Application
    Filed: April 12, 2010
    Publication date: December 9, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Kenichi Ishii
  • Patent number: 7847417
    Abstract: A solder resist and a central pad to which a central Au bump provided on a semiconductor chip is flip-chip bonded are formed on a substrate main body. In a flip-chip mounting substrate where an underfill resin is provided after the semiconductor chip is mounted, a central opening portion for exposing the central pad is formed in the solder resist, and also, an edge portion forming the central opening portion of the solder resist is partially overlapped with the outer peripheral portion of the central pad.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: December 7, 2010
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Yasushi Araki, Seiji Sato, Masatoshi Nakamura, Takashi Ozawa
  • Publication number: 20100304533
    Abstract: A method of manufacturing a semiconductor device, including the following steps, forming a resin layer on a surface of a semiconductor chip, the surface is provided with a bump formed thereon, the resin layer having photosensitivity and adhesiveness, exposing an upper surface of the bump by removing a part of the resin layer right above the bump by exposing and then developing the resin layer, and bonding the semiconductor chip provided with a resin film formed of the resin layer face-down to a substrate, the bump of the semiconductor chip and a conductive section of the substrate being electrically connected by the resin film functioning as an adhesive.
    Type: Application
    Filed: July 23, 2010
    Publication date: December 2, 2010
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Nobuaki HASHIMOTO
  • Patent number: 7838333
    Abstract: The present invention discloses an electronic device package and a method of the package. In particular, an electronic device package and a method of the package suitable for a bumpless electronic device package with enhanced electrical performance and heat-dissipation efficiency are disclosed. The method comprises: providing a substrate having a plurality of vias and a plurality of electronic devices; forming a gluing layer on a surface of the substrate and fixing the electronic devices on the gluing layer, wherein the electronic devices have I/O units aligned with the vias respectively; forming a plurality of fixing layers in the gaps between the electronic devices; trenching a plurality of openings aligned with the vias respectively in the fixing layer; forming a plurality of metallic conductive units in the vias, the openings and part of the surface of the substrate; and forming a passivation layer over the other surface of the substrate.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 23, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Shou-Lung Chen, Ching-Wen Hsiao, Yu-Hua Chen, Jeng-Dar Ko, Jyh-Rong Lin
  • Publication number: 20100291738
    Abstract: A semiconductor die is attached to a packaging substrate by a patterned layer of conductive metal that includes voids. The voids provide a space into which the metal may expand when heated in order to avoid placing mechanical stress on the bonds caused by mismatches in the thermal coefficients of thermal expansion of the die, the conductive metal bond layer and the substrate. An additional coating of conductive metal may be flowed over the bond lines to reinforce the bonds.
    Type: Application
    Filed: August 6, 2010
    Publication date: November 18, 2010
    Applicant: THE BOEING COMPANY
    Inventors: Leora Peltz, Wayne Johnson
  • Publication number: 20100291737
    Abstract: A method of manufacturing a semiconductor package that includes: forming a first board; forming second boards, in each of which at least one cavity is formed; attaching the second boards to both sides of the first board, such that the second boards are electrically connected with the first board; and connecting at least one component with the first board by a flip chip method by embedding the component in the cavity. The method can prevent damage to the semiconductor chips and lower manufacturing costs, while the connection material may also mitigate stresses, to prevent cracking in the boards and semiconductor chips, while preventing defects such as bending and warpage. Defects caused by temperature changes may also be avoided. Furthermore, it is not necessary to use an underfill in the portions where the semiconductor chips are connected with the printed circuit board, which allows for easier reworking and lower costs.
    Type: Application
    Filed: July 22, 2010
    Publication date: November 18, 2010
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Nobuyuki Ikeguchi, Keungjin Sohn, JoonSik Shin, Jung-Hwan Park
  • Patent number: 7833880
    Abstract: A process is provided for manufacturing micromechanical devices formed by joining two parts together by direct bonding. One of the parts (12) is made of silicon and the other one is made of a material chosen between silicon and a semiconductor ceramic or oxidic material. The joint between the two parts forms a cavity (14) containing the functional elements of the device (11), possible auxiliary elements and a getter material deposit (13).
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: November 16, 2010
    Assignee: Saes Getters S.p.A.
    Inventor: Enea Rizzi
  • Patent number: 7833837
    Abstract: A chip scale package includes a patterned circuit layer attached to the active surface of a semiconductor chip through an anisotropic conductive adhesive layer such that contact pads on a lower surface of the patterned circuit layer are electrically coupled to corresponding bonding pads on the semiconductor chip. The patterned circuit layer has a plurality of openings formed therein at locations corresponding to the contact pads such that each of the contact pads has a portion exposed from an upper surface of the patterned circuit layer through the corresponding opening. A plurality of metal bumps are respectively disposed in the openings and mounted to the exposed portions of the contact pads for making external electrical connection. The present invention further provides a method for manufacturing the chip scale package at the wafer-level.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: November 16, 2010
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Jun Young Yang, You Ock Joo, Dong Pil Jung
  • Patent number: 7829385
    Abstract: Printed tape is used to form a leads on chip (LOC) ball grid array (BGA) semiconductor device. Leads for a plurality of devices may be applied simultaneously. Bond wires, glob top encapsulant, and the ball grid arrays for the devices may be formed in single process steps. A low temperature curing adhesive material may be used to reduce the effects of differential thermal expansion between the tape and surface of the wafer. In another embodiment of the invention, anisotropically conductive adhesive material is used to connect bond pads on a wafer to leads printed on a tape.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: November 9, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Warren M. Farnworth
  • Patent number: 7829386
    Abstract: A semiconductor chip packaging structure is fabricated by using a dielectric film with two surfaces, and a power semiconductor chip with an active surface having contact pads. An adhesive layer is used to connect the first surface of the dielectric film and the active surface of the power semiconductor chip. A patterned electrically conductive layer is formed adjacent to the second surface of the film, extending through holes in the film to the contact pads.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: November 9, 2010
    Assignee: General Electric Company
    Inventors: Raymond Albert Fillion, Richard Alfred Beaupre, Ahmed Elasser, Robert John Wojnarowski, Charles Steven Korman
  • Patent number: 7830020
    Abstract: An integrated circuit package system that includes: providing an electrical interconnect system including an inner lead-finger system and an outer lead-finger system; stacking a first device, a second device, and a third device between and over the electrical interconnect system; connecting the first device and the second device to the inner lead-finger system; and connecting the third device to the outer lead-finger system.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: November 9, 2010
    Assignee: Stats Chippac Ltd.
    Inventors: Frederick Rodriguez Dahilig, Sheila Marie L. Alvarez, Antonio B. Dimaano, Jr., Dioscoro A. Merilo
  • Patent number: 7824945
    Abstract: A method for making micro-electromechanical system devices includes: (a) forming a sacrificial layer on a device wafer; (b) forming a plurality of loop-shaped through-holes in the sacrificial layer so as to form the sacrificial layer into a plurality of enclosed portions; (c) forming a plurality of cover caps on the sacrificial layer such that the cover caps respectively enclose the enclosed portions of the sacrificial layer; (d) forming a device through-hole in each of active units of the device wafer so as to form an active part suspended in each of the active units; and (e) removing the enclosed portions of the sacrificial layer through the device through-holes in the active units of the device wafer.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: November 2, 2010
    Assignee: Asia Pacific Microsystems, Inc.
    Inventors: Tso-Chi Chang, Mingching Wu
  • Publication number: 20100264553
    Abstract: A method of assembling an electronic device and electronic packages therefrom. A die attach adhesive precursor is placed between a top surface of a workpiece and an IC die. The die attach adhesive precursor includes metal particles, a first plurality of first microcapsules having a polymerizable material inside, and a second plurality of second microcapsules having a polymerization agent inside to form a first polymer upon rupture of first and second microcapsules. A force sufficient to rupture at least a portion of the first plurality of first microcapsules and at least a portion of the second plurality of second microcapsules is applied to form a self-healing die attach adhesive wherein the first polymer binds the plurality of metal particles and the remaining microcapsules and secures the IC die to the top surface of the workpiece. The self-healing die attach adhesive generally includes at least 90 vol. % metal.
    Type: Application
    Filed: April 16, 2009
    Publication date: October 21, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: JAMES C. WAINERDI, JOHN P. TELLKAMP
  • Publication number: 20100264534
    Abstract: A chip package structure includes a circuit substrate, a chip, at least one bonding wire, and an adhesive layer. The circuit substrate has a bonding surface and at least one pad disposed on the bonding surface. The chip is disposed on the bonding surface of the circuit substrate and has an active surface away from the circuit substrate and at least one contact pad disposed on the active surface. The bonding wire is connected between the contact pad and the pad, such that the chip is electrically connected to the circuit substrate through the bonding wire. The bonding wire includes a copper layer, a nickel layer covering the copper layer, and a gold layer covering the nickel layer. The adhesive layer is disposed between the pad and the bonding wire and between the contact pad and the bonding wire and respectively covers two terminals of the bonding wire.
    Type: Application
    Filed: August 17, 2009
    Publication date: October 21, 2010
    Applicant: Unimicron Technology Corp.
    Inventor: Chung-Pan Wu
  • Patent number: 7811863
    Abstract: A method of making a semiconductor chip assembly includes mechanically attaching a semiconductor chip to a routing line, forming a metal pillar on the routing line, forming an encapsulant that covers the chip and the metal pillar, grinding the encapsulant without grinding the metal pillar, then grinding the encapsulant and the metal pillar such that the encapsulant and the metal pillar are laterally aligned, and then attaching a heat sink to the metal pillar.
    Type: Grant
    Filed: February 1, 2009
    Date of Patent: October 12, 2010
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang, David M. Sigmond
  • Patent number: 7811843
    Abstract: A method of manufacturing an LED includes the following steps: preparing an LED wafer including a substrate and an epitaxial layer formed on the substrate; cutting the epitaxial layer of the LED wafer into a plurality of LED dies with a gap defined between every two neighboring dies; filling an electrically insulating material in each gap between neighboring LED dies such that the neighboring LED dies are separated from each other by the insulating material; providing a circuit board having a layer of anisotropic conductive adhesive coated thereon; pressing the LED dies against the adhesive to bring the top surfaces of the LED dies into contact with the adhesive such that the LED dies each are electrically connected to the circuit board via the adhesive; and encapsulating the LED dies with a light penetrable material.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: October 12, 2010
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chih-Chen Lai
  • Publication number: 20100248424
    Abstract: A first semiconductor chip and a second semiconductor chip are provided with a matching pair of hydrophilic top surfaces each including a matched set of conductive contact structures. In one embodiment, the first semiconductor chip, the second semiconductor chip, or both is provided with a mesa of which the periphery coincides with the shape of a hydrophilic top surface. In another embodiment, the first semiconductor chip, the second semiconductor chip, or both is provided with a peripheral hydrophobic top surface that laterally surrounds a hydrophilic top surface. Prior to vertical stacking, a polar liquid coats the hydrophilic top surface of a first semiconductor chip. When a second semiconductor chip is placed on the polar liquid, the matching shapes of two hydrophilic surfaces are self-aligned by moving the second semiconductor chip as needed.
    Type: Application
    Filed: December 10, 2009
    Publication date: September 30, 2010
    Applicant: Intellectual Business Machines Corporation
    Inventors: Stephen E. Luce, Anthony K. Stamper
  • Patent number: 7799602
    Abstract: A semiconductor device is made by forming a build-up interconnect structure over a substrate. A semiconductor die is mounted to the build-up interconnect structure. The semiconductor die is electrically connected to the build-up interconnect structure. A ground pad is formed on the build-up interconnect structure. An encapsulant is formed over the semiconductor die and build-up interconnect structure. A shielding cage can be formed over the semiconductor die prior to forming the encapsulant. A shielding layer is formed over the encapsulant after forming the build-up interconnect structure to isolate the semiconductor die from inter-device interference. The shielding layer conforms to a geometry of the encapsulant and electrically connects to the ground pad. The shielding layer can be electrically connected to ground through a conductive pillar. The substrate is removed. A backside interconnect structure is formed over the build-up interconnect structure, opposite the semiconductor die.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: September 21, 2010
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Rui Huang, Yaojian Lin
  • Publication number: 20100233853
    Abstract: Disclosed is a semiconductor device manufacturing method including: preparing a semiconductor wafer which includes a semiconductor device forming region surrounded by dicing streets extending along first and second directions and including columnar electrodes and a sealing film; with respect to the columnar electrodes nearest the dicing streets in the first direction or the columnar electrodes nearest the dicing streets in the second direction, solder paste layers are displaced to an inward side of the semiconductor device forming region; by performing reflow, allowing the solder paste layer contacting with the columnar electrodes nearest the pair of dicing streets extending in the first direction or the solder paste layer contacting with the columnar electrodes nearest the pair of dicing streets extending in the second direction to move so as to form solder bumps.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 16, 2010
    Applicant: Casio Computer Co., Ltd.
    Inventor: Shinji WAKISAKA