Including Forming Gate Electrode As Conductive Sidewall Spacer To Another Electrode Patents (Class 438/267)
  • Publication number: 20070269947
    Abstract: A method for manufacturing a NAND flash memory is provided. First, a substrate is provided. Next, a tunneling dielectric layer, a first conductive layer and a mask layer are sequentially formed on the substrate. Next, a plurality of isolation structures is formed in the mask layer, the first conductive layer, the tunneling dielectric layer and the substrate. Next, the mask layer is removed, so that the top surface of each isolation structure is higher than that of the first conductive layer. Next, a second conductive layer is formed on the exposed sidewalls of the isolation structures. Next, an inter-gate dielectric layer and a third conductive layer are sequentially formed on the substrate.
    Type: Application
    Filed: May 16, 2006
    Publication date: November 22, 2007
    Inventors: Kuei-Yun Chen, Chun-Lien Su, Yin-Jen Chen, Ming-Shang Chen
  • Patent number: 7297595
    Abstract: The present invention provides a non-volatile memory device and fabricating method thereof, in which a height of a floating gate conductor layer pattern is sustained without lowering a degree of integration and by which a coupling ratio is raised. The present invention includes a trench type device isolation layer defining an active area within a semiconductor substrate, a recess in an upper part of the device isolation layer to have a prescribed depth, a tunnel oxide layer on the active area of the semiconductor substrate, a floating gate conductor layer pattern on the tunnel oxide layer, a conductive floating spacer layer provided to a sidewall of the floating gate conductor layer pattern and a sidewall of the recess, a gate-to-gate insulating layer on the floating fate conductor layer pattern and the conductive floating spacer layer, and a control gate conductor layer on the gate-to-gate insulating layer.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: November 20, 2007
    Assignee: Dongbu Hitek Co., Ltd.
    Inventors: Sung Mun Jung, Jum Soo Kim
  • Patent number: 7276759
    Abstract: In a memory cell array, each memory cell includes a control gate disposed laterally adjacent a floating gate. The memory cells in each memory column are disposed inside a single well. The control gate and the floating gate are disposed between two diffusion regions. Each memory cell may be erased and programmed by applying a combination of voltages to the diffusion regions, the control gate, and the well.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: October 2, 2007
    Assignee: Nanostar Corporation
    Inventors: Andy Yu, Ying W. Go
  • Patent number: 7271065
    Abstract: Structures and methods for memory devices are provided which operate with lower control gate voltages than conventional floating gate transistors, and which do not increase the costs or complexity of the device fabrication process. The novel memory cell includes a source region and a drain region separated by a channel region in a horizontal substrate. A first vertical gate is separated from a first portion of the channel region by a first oxide thickness. A second vertical gate is separated from a second portion of the channel region by a second oxide thickness. The total capacitance of these memory devices is about the same as that for comparable source and drain spacings. However, the floating gate capacitance (CFG) is much smaller than the control gate capacitance (CCG) such that the majority of any voltage applied to the control gate will appear across the floating gate thin tunnel oxide.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 7268042
    Abstract: A nonvolatile semiconductor memory device of a split gate structure having a gate of low resistance suitable to the arrangement of a memory cell array is provided. When being formed of a side wall spacer, a memory gate is formed of polycrystal silicon and then replaced with nickel silicide. Thus, its resistance can be lowered with no effect on the silicidation to the selection gate or the diffusion layer.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: September 11, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Digh Hisamoto, Kan Yasui
  • Patent number: 7262093
    Abstract: A flash memory cell is provided. The flash memory cell includes a substrate having a source and a drain formed therein, a bit line contact formed above the drain, a control gate formed above the substrate, a spacer floating gate formed above the substrate and adjacent to the control gate, and a first spacer formed between the bit line contact and the control gate, wherein the first spacer is in contact with both the bit line contact and the control gate.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: August 28, 2007
    Assignee: ProMOS Technologies, Inc.
    Inventor: Tings Wang
  • Patent number: 7259420
    Abstract: Disclosed is a multiple-gate transistor that includes a channel region and source and drain regions at ends of the channel region. A gate oxide is positioned between a logic gate and the channel region and a first insulator is formed between a floating gate and the channel region. The first insulator is thicker than the gate oxide. The floating gate is electrically insulated from other structures. Also, a second insulator is positioned between a programming gate and the floating gate. Voltage in the logic gate causes the transistor to switch on and off, while stored charge in the floating gate adjusts the threshold voltage of the transistor. The transistor can comprise a fin-type field effect transistor (FinFET), where the channel region comprises the middle portion of a fin structure and the source and drain regions comprise end portions of the fin structure.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: August 21, 2007
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 7250341
    Abstract: A non-volatile memory device includes a substrate having a first active region and a second active region. A first floating gate is provided over the first active region and having an edge, the first floating gate being made of a conductive material. A first spacer is connected to the edge of the first floating gate and being made of the same conductive material as that of the first floating gate. A control gate is provided proximate to the floating gate.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: July 31, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hsingya Arthur Wang, Kai-Cheng Chou, Peter Rabkin
  • Patent number: 7250337
    Abstract: A nonvolatile memory device and a method for fabricating the same is disclosed, to prevent a “smiling” phenomenon in an ONO layer, thereby improving the programming and erasing characteristics, reliability and yield. The device generally includes a semiconductor substrate; a gate insulating layer, a selection gate and a first insulating layer on the semiconductor substrate; an ONO layer formed on the semiconductor substrate including the selection gate; and a control gate formed on the ONO layer at least partially overlapping with the selection gate.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: July 31, 2007
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sang Bum Lee
  • Patent number: 7244642
    Abstract: The present invention provides a method of fabricating a microelectronics device. In one aspect, the method comprises depositing a protective layer (510) over a spacer material (415) located over gate electrodes (250) and a doped region (255) located between the gate electrodes (250), removing a portion of the spacer material (415) and the protective layer (510) located over the gate electrodes (250). A remaining portion of the spacer material (415) remains over the top surface of the gate electrodes (250) and over the doped region (255), and a portion of the protective layer (510) remains over the doped region (255). The method further comprises removing the remaining portion of the spacer material (415) to form spacer sidewalls on the gate electrodes (250), expose the top surface of the gate electrodes (250), and leave a remnant of the spacer material (415) over the doped region (255).
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: July 17, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Steven A. Vitale, Hyesook Hong, Freidoon Mehrad
  • Patent number: 7226851
    Abstract: A method for manufacturing semiconductor device is provided. First, a substrate is provided. Then, a plurality of first gate lines disposed in parallel to each other and a first dummy gate line disposed in a direction perpendicular to the first gate lines are formed on the substrate. There is a first gap between the first dummy gate line and the first gate lines and there is a second gap between every pair of adjacent first gate lines. Thereafter, a second composite layer and a conductive layer are sequentially formed over the substrate. The conductive layer is etched back to form a plurality of second device structures that completely fills the second gaps. Then, the conductive layer in the first gap is removed.
    Type: Grant
    Filed: November 11, 2005
    Date of Patent: June 5, 2007
    Assignee: Powchip Semiconductor Corp.
    Inventors: Chien-Lung Chu, Wei-Chung Tseng, Saysamone Pittikoun, Houng-Chi Wei
  • Patent number: 7214585
    Abstract: A widened contact area (170X) of a conductive feature (170) is formed by means of self-alignment between an edge (170E2) of the conductive feature and an edge (140E) of another feature (140). The other feature (“first feature”) is formed from a first layer, and the conductive feature is formed from a second layer overlying the first layer. The edge (170E2) of the conductive feature is shaped to provide a widened contact area. This shaping is achieved in a self-aligned manner by shaping the corresponding edge (140E) of the first feature.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: May 8, 2007
    Assignee: ProMOS Technologies Inc.
    Inventor: Yi Ding
  • Patent number: 7211485
    Abstract: There are provided a method of fabricating a flash memory device and a flash memory device fabricated thereby. The method of fabricating a flash memory device includes forming an isolation layer defining an active region in a semiconductor substrate, wherein the isolation layer is formed to have a protrusion being higher than a top surface of the active region, and to provide a groove in the active region. A conductive layer pattern is formed in the groove. A buffer layer is formed on the semiconductor substrate having the conductive layer pattern. Then, an oxidation barrier layer pattern having a line shape opening across the active region is formed on the buffer layer. The buffer layer and an upper portion of the conductive layer pattern, which are exposed by the opening, are selectively oxidized to form a mask oxide layer at a cross region of the opening and the active region, and simultaneously to form a buffer oxide layer on the isolation layer adjacent to the mask oxide layer.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: May 1, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Wook Hyun, Jae-Won Um
  • Patent number: 7196370
    Abstract: A nonvolatile semiconductor memory device includes a memory cell array region including a plurality of NAND cells, each NAND cell having a plurality of memory cell transistors, and which are arranged in series, and a plurality of select transistors. A trench-type isolation region is formed between columns in the array of the NAND columns. The trench-type isolation region is formed in self-alignment with end portions of the channel region and a floating gate of the memory cell transistor, formed in self-alignment with the end portion of a channel region of the select transistor, and has a recess formed in at least the upper surface between the floating gates of the memory cell transistors.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: March 27, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Kai, Hiroaki Hazama, Hirohisa Iizuka
  • Patent number: 7190019
    Abstract: A widened contact area (170X) of a conductive feature (170) is formed by means of self-alignment between an edge (170E2) of the conductive feature and an edge (140E) of another feature (140). The other feature (“first feature”) is formed from a first layer, and the conductive feature is formed from a second layer overlying the first layer. The edge (170E2) of the conductive feature is shaped to provide a widened contact area. This shaping is achieved in a self-aligned manner by shaping the corresponding edge (140E) of the first feature.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: March 13, 2007
    Assignee: ProMOS Technologies Inc.
    Inventor: Yi Ding
  • Patent number: 7186615
    Abstract: A new method to form a floating gate for a flash memory device is achieved. The method comprises forming a gate dielectric layer overlying a substrate. A first conductor layer is deposited overlying the gate dielectric layer. A masking layer is formed overlying the first conductor layer. The masking layer and first conductor layer are etched through. A second conductor layer is deposited overlying the masking layer, the first conductor layer, and the substrate. The second conductor layer is etched down to form spacers on the sidewalls of the first conductor layer and the masking layer. The spacers extend vertically above the top surface of the first conductor layer. The masking layer is etched away to complete said floating gate.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: March 6, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Chia-Chen Liu
  • Patent number: 7183153
    Abstract: A method of forming an array of non-volatile memory cells includes forming a plurality of floating gate structures and shaping the plurality of floating gate structures to reduce the width of upper parts of floating gate structures. A first process forms floating gates by etching an upper portion of a polysilicon structure with masking elements in place to shape the floating gate. A second process etches recesses and protrusions in a polysilicon structure prior to etching the structure to form individual floating gates.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: February 27, 2007
    Assignee: SanDisk Corporation
    Inventors: Jeffrey W. Lutze, Tuan Pham, Masaaki Higashitani
  • Patent number: 7183158
    Abstract: A method of fabricating a nonvolatile memory is provided. The method includes forming a bottom dielectric layer, a charge trapping layer, a top dielectric layer and a conductive layer on the substrate sequentially. Portions of conductive layer, top dielectric layer, charge trapping layer and bottom dielectric layer are removed to form several trenches. An insulation layer is formed in the trenches to form a plurality of isolation structures. A plurality of word lines are formed on the conductive layer and the isolation structures. By using the word lines as a mask, portions of bottom dielectric layer, charge trapping layer, top dielectric layer, conductive layer and isolation structures are removed to form a plurality of devices. The bottom oxide layer has different thickness on the substrate so that these devices can be provided with different performance. These devices serve as memory cells with different character or devices in periphery region.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: February 27, 2007
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Chien-Lung Chu, Jen-Chi Chuang
  • Patent number: 7179709
    Abstract: in methods of fabricating a non-volatile memory device having a local silicon-oxide-nitride-oxide-silicon (SONOS) gate structure, a semiconductor substrate having a cell transistor area, a high voltage transistor area, and a low voltage transistor area, is prepared. At least one memory storage pattern defining a cell gate insulating area on the semiconductor substrate within the cell transistor area is formed. An oxidation barrier layer is formed on the semiconductor substrate within the cell gate insulating area. A lower gate insulating layer is formed on the semiconductor substrate within the high voltage transistor area. A conformal upper insulating layer is formed on the memory storage pattern, the oxidation barrier layer, and the lower gate insulating layer. A low voltage gate insulating layer having a thickness which is less than a combined thickness of the upper insulating layer and the lower gate insulating layer is formed on the semiconductor substrate within the low voltage transistor area.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: February 20, 2007
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Sang-Su Kim, Geum-Jong Bae, In-Wook Cho, Jin-Hee Kim
  • Patent number: 7176085
    Abstract: A method of manufacturing a split gate type nonvolatile semiconductor memory device in which control gates are formed by a self aligning process.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: February 13, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-seog Jeon, Seung-beom Yoon
  • Patent number: 7169667
    Abstract: In a memory cell (110) having multiple floating gates (160), the select gate (140) is formed before the floating gates. In some embodiments, the memory cell also has control gates (170) formed after the select gate. Substrate isolation regions (220) are formed in a semiconductor substrate (120). The substrate isolation regions protrude above the substrate. Then select gate lines (140) are formed. Then a floating gate layer (160) is deposited. The floating gate layer is etched until the substrate isolation regions are exposed. A dielectric (164) is formed over the floating gate layer, and a control gate layer (170) is deposited. The control gate layer protrudes upward over each select gate line. These the control gates and the floating gates are defined independently of photolithographic alignment. In another aspect, a nonvolatile memory cell has at least two conductive floating gates (160).
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: January 30, 2007
    Assignee: ProMOS Technologies Inc.
    Inventor: Yi Ding
  • Patent number: 7166511
    Abstract: A method for fabricating a split gate flash memory includes depositing a second conductive layer for forming a control gate on a semiconductor substrate having a first conductive layer, an insulating layer, and an oxide layer on both sides of the first conductive layer formed thereon, filling an anti-implant protective layer in a depression of the second conductive layer, performing ion implant on the second conductive layer, removing the anti-implant protective layer filled in the depression of the second conductive layer, forming a photoresist pattern by depositing a photoresist layer on the second conductive layer for forming a control gate, and treating the photoresist layer with a light exposure and a development process, and forming the control gate by etching the second conductive layer.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: January 23, 2007
    Assignee: Dongbu Electronics
    Inventor: Sang Hun Oh
  • Patent number: 7166513
    Abstract: A flash memory cell array comprises a substrate, a string of memory cell structures and source region/drain region. Each of memory cell structures includes a stack gate structure including a select gate dielectric layer, a select gate and a gate cap layer formed on the substrate; a spacer is set on the sidewall of the select gate; a control gate connected to the stack gate structure is set on the one side of the stack gate structure; a floating gate is set between the control gate and the substrate; an inter-gate dielectric layer is set between the control gate and the floating gate; and a tunneling dielectric layer is set between the floating gate and the substrate. The source region/drain region is set in the substrate near outer control gate and stack gate structure of the flash memory cell array.
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: January 23, 2007
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Cheng-Yuan Hsu, Chih-Wei Hung, Chi-Shan Wu, Min-San Huang
  • Patent number: 7160777
    Abstract: Embodiments of the invention include a gate insulating layer formed on a semiconductor substrate; a spacer-type floating gate and a spacer-type dummy pattern, which are formed on the gate insulating layer and separated apart from each other, the floating gate and the dummy pattern having round surfaces that face outward; a pair of insulating spacers, which are formed on a sidewall of the floating gate and a sidewall of the dummy pattern which face each other; a control gate formed in a self-aligned manner between the pair of insulating spacers; a tunnel insulating layer interposed between the floating gate and the control gate; and source and drain regions formed in the semiconductor substrate outside the floating gate and the dummy pattern.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: January 9, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Suk Choi, Seung-Beom Yoon
  • Patent number: 7153744
    Abstract: A method of manufacturing a microelectronic device including, in one embodiment, providing a substrate having a plurality of partially completed microelectronic devices including at least one partially completed memory device and at least one partially completed transistor. At least a portion of the partially completed transistor is protected by forming a first layer over the portion of the partially completed transistor to be protected during a subsequent material removal step. A second layer is formed substantially covering the partially completed memory device and the partially completed transistor. Portions of the second layer are removed leaving a portion of the second layer over the partially completed memory device. At least a substantial portion of the first layer is removed from the partially completed transistor after the portions of the second layer are removed.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: December 26, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Han-Ping Chen, Chung-Yi Yu
  • Patent number: 7151030
    Abstract: Structures and methods for memory devices are provided which operate with lower control gate voltages than conventional floating gate transistors, and which do not increase the costs or complexity of the device fabrication process. The novel memory cell includes a source region and a drain region separated by a channel region in a horizontal substrate. A first vertical gate is separated from a first portion of the channel region by a first oxide thickness. A second vertical gate is separated from a second portion of the channel region by a second oxide thickness. The total capacitance of these memory devices is about the same as that for comparable source and drain spacings. However, the floating gate capacitance (CFG) is much smaller than the control gate capacitance (CCG) such that the majority of any voltage applied to the control gate will appear across the floating gate thin tunnel oxide.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: December 19, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 7148100
    Abstract: Methods of forming a microelectronic device can include providing a gate dielectric layer on a channel region of a semiconductor substrate wherein the gate dielectric layer is a high-k dielectric material. A gate electrode barrier layer can be provided on the gate dielectric layer opposite the channel region of the semiconductor substrate, and a gate electrode metal layer can be provided on the gate electrode barrier layer opposite the channel region of the semiconductor substrate. The gate electrode barrier layer and the gate electrode metal layer can be formed of different materials. Moreover, the gate electrode metal layer can include a first material and the gate electrode barrier layer can include a second material, and the first material can have a lower electrical resistivity than the second material.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: December 12, 2006
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Byung-Hee Kim, Gil-Heyun Choi, Kyung-In Choi, Chang-Won Lee
  • Patent number: 7144773
    Abstract: A method for forming a split gate flash device is provided. In one embodiment, a semiconductor substrate with a dielectric layer formed thereover is provided. A conductor layer is formed overlying the dielectric layer. A masking layer is deposited overlying the conductor layer. A light sensitive layer is formed overlying the masking layer. The light sensitive layer is patterned and etched to form a pattern of openings therein. The masking layer and the conductor layer are etched according to the pattern of openings in the light sensitive layer. The conductor layer is etched at the outer surface area between the conductor layer and the dielectric layer to form undercuts. The dielectric layer is etched to form a notch profile at the outer surface area between the conductor layer and the dielectric layer and portions of the substrate are etched to form a plurality of trenches. An isolation layer is filled over the plurality of trenches and the masking layer.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: December 5, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Chang Liu, Chi-Hsin Lo, Gwo-Yuh Shiau, Chia-Shiung Tsai
  • Patent number: 7144778
    Abstract: A self aligned method of forming an array of floating gate memory cells, and an array formed thereby, wherein each memory cell includes a trench formed into a surface of a semiconductor substrate, and spaced apart source and drain regions with a channel region formed therebetween. The drain region is formed underneath the trench, and the channel region includes a first portion that extends vertically along a sidewall of the trench and a second portion that extends horizontally along the substrate surface. An electrically conductive floating gate is formed over and insulated from a portion of the channel region. A raised source line of conductive material is disposed over the source region, and laterally adjacent to and insulated from the floating gate. An electrically conductive control gate is formed having a first portion disposed in the trench and a second portion formed over but insulated from the floating gate.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: December 5, 2006
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Sohrab Kianian, Chih Hsin Wang
  • Patent number: 7141473
    Abstract: A self-aligned 1 bit silicon oxide nitride oxide silicon (SONOS) cell and a method of fabricating the same has high uniformity between adjacent SONOS cells, since the lengths of nitride layers do not vary due to misalignment when etching word lines of the 1 bit SONOS cells. An insulating layer pattern that forms a sidewall of a word line is formed on a semiconductor substrate, and a word line for a gate is formed on the sidewall thereof. Etching an ONO layer using a self-aligned etching spacer provides uniform adjacent SONOS cells.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: November 28, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-seog Jeon, Seung-beom Yoon, Yong-tae Kim
  • Patent number: 7132331
    Abstract: A semiconductor device having a self-aligned gate conductive layer and a method of fabricating the same are disclosed. In embodiments of the present invention, a plurality of field isolation patterns are formed on a semiconductor substrate to define a plurality of active regions in the semiconductor substrate. The density of the field isolation patterns is then increased by, for example, a thermal annealing process. A plurality of gate insulation patterns are then formed on respective of the active regions. A plurality of first conductive patterns are then formed on respective of the gate insulation patterns.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: November 7, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Goan Jang, Chang-Hyun Lee, Jae-Hoon Kim
  • Patent number: 7132329
    Abstract: A storage device structure (10) has two bits of storage per control gate (34) and uses source side injection (SSI) to provide lower programming current. A control gate (34) overlies a drain electrode formed by a doped region (22) that is positioned in a semiconductor substrate (12). Two select gates (49 and 50) are implemented with conductive sidewall spacers adjacent to and lateral to the control gate (34). A source doped region (60) is positioned in the semiconductor substrate (12) adjacent to one of the select gates for providing a source of electrons to be injected into a storage layer (42) underlying the control gate. Lower programming results from the SSI method of programming and a compact memory cell size exists.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: November 7, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cheong M. Hong, Gowrishankar L. Chindalore
  • Patent number: 7118969
    Abstract: A method of manufacturing a floating gate provides an enhancement for the efficiencies of electron charge and injection. First, a conductive pattern, constituting the floating gate is formed on a substrate. A first insulation layer is formed on a sidewall of the conductive pattern, and then a second insulation layer is formed at an upper portion of the conductive pattern in ways that increase the sharpness of an edge portion where the sidewall and upper portions of the conductive pattern meet. Therefore, electron transference from the floating ate to a control gate is facilitated.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: October 10, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Kuk Chung, Chang-Rok Moon
  • Patent number: 7115458
    Abstract: Methods and apparatus utilizing a stepped floating gate structure to facilitate reduced spacing between adjacent cells without significantly impacting parasitic capacitance. The stepped structure results in a reduced surface area of a first floating gate in close proximity to an adjacent floating gate with substantially no reduction in coupling area, thus facilitating a reduction in parasitic capacitance leading to improved gate coupling characteristics. Also, because of the reduced surface area exposed to adjacent floating gates, the floating gates may be formed with reduced spacing, thus further leading to improved gate coupling characteristics.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: October 3, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Paul J. Rudeck
  • Patent number: 7078295
    Abstract: Provided are non-volatile split-gate memory cells having self-aligned floating gate and the control gate structures and exemplary processes for manufacturing such memory cells that provide improved dimensional control over the relative lengths and separation of the split-gate elements. Each control gate includes a projecting portion that extends over at least a portion of the associated floating gate with the size of the projecting portion being determined by a first sacrificial polysilicon spacer that, when removed, produces a concave region in an intermediate insulating structure. The control gate is then formed as a polysilicon spacer adjacent the intermediate insulating structure, the portion of the spacer extending into the concave region determining the dimension and spacing of the projecting portion and the thickness of the interpoly oxide (IPO) separating the upper portions of the split-gate electrodes thereby providing improved performance and manufacturability.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: July 18, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee Seog Jeon, Seung Beom Yoon, Yong Tae Kim
  • Patent number: 7071063
    Abstract: A non-volatile memory cell having a local silicon nitride layer to control dispersion of hot electrons is disclosed. The dual-bit non-volatile memory cell has a stack of layers including silicon on the surface of a substrate. The stack of layers has at least one first oxide silicon layer and a silicon nitride layer overlying the first oxide silicon layer. An opening is formed in the stack of layers and a gate oxide layer is deposited on the surface of the substrate within the opening. A control gate is formed on the gate oxide layer followed by a second oxide silicon layer overlying the surfaces of the control gate and the stack of layers. A second polysilicon layer is formed overlying the gate oxide layer. Dual split-gates are then formed on the second polysilicon layer.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: July 4, 2006
    Assignee: United Microelectronics Corp.
    Inventors: Ping-Chia Shih, Shou-Wei Hsieh
  • Patent number: 7071061
    Abstract: A method of fabricating a non-volatile memory is described. A substrate is provided and a first dielectric layer, an electron trapping layer and a second dielectric layer are sequentially formed thereon. Each of the stacked gate structures includes a first gate and a cap layer having a gap between every two stacked gate structures. An oxide layer is formed on the sidewalls of the first gate. A portion of the second dielectric layer not covered by the stacked gate structures is removed. A third dielectric layer is further formed on the substrate. A second conductive layer is formed over the substrate, and a portion thereof to form second gates. The second gates and the stacked gate structures form a column of memory cells. A source region and a drain region are formed in the substrate adjacent to two sides of the column of memory cells.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: July 4, 2006
    Assignee: Powerchip Semiconductor Corp.
    Inventor: Saysamone Pittikoun
  • Patent number: 7071060
    Abstract: Novel memory cells utilize source-side injection, allowing very small programming currents. If desired, to-be-programmed cells are programmed simultaneously while not requiring an unacceptably large programming current for any given programming operation. In one embodiment, memory arrays are organized in sectors with each sector being formed of a single column or a group of columns having their control gates connected in common. In one embodiment, a high speed shift register is used in place of a row decoder to serially shift in data for the word lines, with all data for each word line of a sector being contained in the shift register on completion of its serial loading. In one embodiment, speed is improved by utilizing a parallel loaded buffer register which receives parallel data from the high speed shift register and holds that data during the write operation, allowing the shift register to receive serial loaded data during the write operation for use in a subsequent write operation.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: July 4, 2006
    Assignee: SanDisk Corporation
    Inventors: Daniel C. Guterman, Gheorghe Samachisa, Yupin Kawing Fong, Eliyahou Harari
  • Patent number: 7067875
    Abstract: A semiconductor integrated circuit device has a plurality of rows of pillars, each row being composed of semiconductor pillars and insulator pillars alternately arranged in one direction with no gap therebetween, a plurality of nonvolatile memory elements provided individually in the plurality of semiconductor pillars, the plurality of nonvolatile memory elements having control gate electrodes provided over side surfaces of said semiconductor pillars along the one direction via gate insulating films, drain regions provided in upper surface portions of the semiconductor pillars, and source regions provided in bottom surface portions of the semiconductor pillars, and lines including the respective control gate electrodes of the plurality of nonvolatile memory elements and provided along the one direction over the side surfaces of the rows of pillars along the one direction.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: June 27, 2006
    Assignee: Renesas Technology Corp.
    Inventor: Shoji Shukuri
  • Patent number: 7064031
    Abstract: A method for forming a semiconductor device by self-aligned is provided. The present method provides a substrate and a multilayer structure is formed thereon. A patterned first layer is formed on the multilayer structure, and a second layer is then formed on the patterned first layer and the multilayer structure. An etching step is performed to partially etch the second layer. A third layer is formed and then is partially removed. Another etching step etches the patterned first layer. The multilayer structure is etched to expose the substrate. The third layer is also etched. A gate layer is formed on the semiconductor device, wherein a plurality of implanted regions are formed inside the substrate not covered by the multilayer structure.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: June 20, 2006
    Assignee: United Microelectronics Corp.
    Inventor: Chung-Chin Shih
  • Patent number: 7064030
    Abstract: Forming a non-volatile memory device includes providing a semiconductor substrate, forming a masking layer having a first plurality of openings overlying the semiconductor substrate, forming diffusion regions in the semiconductor substrate at locations determined by the masking layer, forming a dielectric within the first plurality of openings, removing the masking layer to form a second plurality of openings, forming sacrificial spacers along edges of the second plurality of openings and adjacent to the dielectric, forming a separating dielectric to separate the sacrificial spacers within each of the second plurality of openings, forming a sacrificial protection layer overlying the separating dielectric, removing the sacrificial spacers, removing the sacrificial protection layer, forming at least two memory storage regions within each of the second plurality of openings, and forming a common control electrode overlying the at least two memory storage regions.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: June 20, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gowrishankar L. Chindalore, Jane A. Yater
  • Patent number: 7060565
    Abstract: A memory cell (110) has a select gate (140) and at least two floating gates (160). A gate dielectric (150) for the floating gates (160) is formed by thermal oxidation simultaneously with as a dielectric on a surface of the select gate (140). The dielectric thickness on the select gate is controlled by the dopant concentration in the select gate. Other features are also provided.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: June 13, 2006
    Assignee: ProMOS Technologies Inc.
    Inventor: Yi Ding
  • Patent number: 7053442
    Abstract: A nonvolatile semiconductor memory device having a small layout area includes a memory cell array in which a plurality of memory cells are arranged in a row direction and a column direction. The memory cell array includes source line diffusion layers, each of the source line diffusion layers extending along the row direction and connecting in common with the memory cells arranged in the row direction, bitline diffusion layers, element isolation regions which separate each of the bitline diffusion layers, and word gate common connection sections. Each of the memory cells includes a word gate and a select gate. One of the bitline diffusion layers is formed between two word gates adjacent in the column direction Y. Each of the word gate common connection sections is connected with the two word gates above one of the element isolation regions.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: May 30, 2006
    Assignee: Seiko Epson Corporation
    Inventor: Kimihiro Maemura
  • Patent number: 7037783
    Abstract: A method of manufacturing a split gate type nonvolatile semiconductor memory device in which control gates are formed by a self aligning process.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: May 2, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-seog Jeon, Seung-beom Yoon
  • Patent number: 7037787
    Abstract: Flash memory and process of fabrication in which memory cells are formed with select gates in trenches between stacked, self-aligned floating and control gates, with buried source and drain regions which are gated by the select gates. Erase paths are formed between projecting rounded edges of the floating gates and the select gates, and programming paths extend from the mid-channel regions between the select gates and floating gates through the gate oxide to the edges of the floating gates. Trenched select gates can be provided on one or both sides of the floating and control gates, depending upon array architecture, and the stacked gates and dielectric covering them are used as a self-aligned mask in etching the substrate and other materials to form the trenches.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: May 2, 2006
    Assignees: Actrans System Inc., Actrans System Incorporation, USA
    Inventors: Der-Tsyr Fan, Jung-Chang Lu, Chiou-Feng Chen, Prateep Tuntasood
  • Patent number: 7022573
    Abstract: A stacked gate vertical flash memory and a fabrication method thereof. The stacked gate vertical flash memory comprises a semiconductor substrate with a trench, a source conducting layer formed on the bottom of the trench, an insulating layer formed on the source conducting layer, a gate dielectric layer formed on a sidewall of the trench, a conducting spacer covering the gate dielectric layer as a floating gate, an inter-gate dielectric layer covering the conducting spacer, and a control gate conducting layer filled in the trench.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: April 4, 2006
    Assignee: Nanya Technology Corporation
    Inventors: Ching-Nan Hsiao, Ying-Cheng Chuang, Chi-Hui Lin
  • Patent number: 7018914
    Abstract: A highly integrated semiconductor device operates at a high speed due to low resistance at the gate electrode and minimal parasitic capacitance between the gate electrode and substrate. A gate pattern is formed on a substrate, and an insulating layer is formed over the substrate including over the gate pattern. The thickness of the insulating layer is reduced until the upper surface thereof beneath the level of the upper surface of the gate electrode. A conductive layer is then formed on the substrate, and is anisotropically etched to thereby form wings constituting a first spacer on upper sidewalls of the gate pattern. Then, the insulating layer is etched to leave a portion thereof beneath the wings. This remaining portion of the insulating layer constitutes a capacitance preventative layer that serves as a measure against the subsequent forming of a parasitic capacitor when source/drain electrodes are formed by implanting ions into the substrate and heat-treating the same.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: March 28, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chan-Hyung Cho, Sung-Gyu Park
  • Patent number: 7018895
    Abstract: In a memory cell (110) having multiple floating gates (160), the select gate (140) is formed before the floating gates. In some embodiments, the memory cell also has control gates (170) formed after the select gate. Substrate isolation regions (220) are formed in a semiconductor substrate (120). The substrate isolation regions protrude above the substrate. Then select gate lines (140) are formed. Then a floating gate layer (160) is deposited. The floating gate layer is etched until the substrate isolation regions are exposed. A dielectric (164) is formed over the floating gate layer, and a control gate layer (170) is deposited. The control gate layer protrudes upward over each select gate line. These the control gates and the floating gates are defined independently of photolithographic alignment. In another aspect, a nonvolatile memory cell has at least two conductive floating gates (160).
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: March 28, 2006
    Assignee: ProMOS Technologies Inc.
    Inventor: Yi Ding
  • Patent number: 7018897
    Abstract: A self aligned method of forming a semiconductor memory array of floating gate memory cells in a semiconductor substrate has a plurality of spaced apart isolation regions and active regions on the substrate substantially parallel to one another in the column direction. Floating gates are formed in each of the active regions by forming a conductive layer of material. Trenches are formed in the row direction across the active regions, and are filled with a conductive material to form blocks of conductive material that are the control gates. Sidewall spacers of conductive material are formed along the floating gate blocks to give the floating gates protruding portions that extend over the floating gate.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: March 28, 2006
    Assignee: Silicon Storage Technology, Inc.
    Inventor: Chih Hsin Wang
  • Patent number: 7005328
    Abstract: A semiconductor device having memory cells. Each of the memory cells has a word gate formed over a semiconductor substrate with a first gate insulating layer interposed, an impurity layer, and first and second control gates in the shape of sidewalls. The first and second control gates adjacent to each other with the impurity layer interposed are connected to a common contact section. The common contact section includes a first contact conductive layer, a second contact conductive layer, and a pad-shaped third contact conductive layer. The third contact conductive layer is formed over the first and second contact conductive layers.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: February 28, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Akihiko Ebina, Susumu Inoue