Ether Oxygen Bonded Directly To Benzene Ring Patents (Class 568/630)
  • Patent number: 9759697
    Abstract: A gas chromatographic method for detecting a marker compound in a fuel by (a) introducing a sample of fuel into a first capillary column coated with a stationary phase based on polydimethylsiloxane and allowing the sample to flow through the first column to produce a first effluent; (b) allowing the first effluent to pass through a detector and identifying a retention time range in it which includes a retention time of the marker compound; (c) introducing only a portion of the first effluent stream which is within the retention time range into a second capillary column coated with either (i) an ionic sorbent or (ii) a polyethylene glycol, and allowing said portion to flow through the second capillary column to produce a second effluent stream; and (d) allowing the second effluent to pass through a detector; wherein the marker compound has formula Ar(R2)m(OR1)n and is present in the fuel at a level from 0.01 ppm to 100 ppm.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: September 12, 2017
    Assignees: ROHM AND HAAS COMPANY, DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Ronda L. Gras, Jim C. Luong, Warren E. Smith
  • Patent number: 9234109
    Abstract: Phase change ink comprising colorant and carrier comprising additive of formula wherein A, E, G, and J are —H, —Cl, —Br, —I, —OH, —COOH, amino, alkyl, aryl, arylalkyl, alkylaryl; Z is —H, alkyl, aryl, arylalkyl, alkylaryl, —(CH2CH2O)mH, Na, K, —P(X)(OR5)(OR6) wherein X is oxygen or sulfur, or —C(?O)R7, and n is 0, 1, 2, or 3. Also, a process which comprises (1) incorporating into an ink jet printing apparatus a phase change ink as disclosed herein; (2) melting the ink; and (3) causing droplets of the melted ink to be ejected in an imagewise pattern onto a substrate.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: January 12, 2016
    Assignee: Xerox Corporation
    Inventors: Caroline M Turek, Marcel P Breton
  • Patent number: 8906260
    Abstract: To provide a liquid crystal compound showing a large absolute value of dielectric anisotropy (|??|. A compound is represented by formula (1): wherein, in formula (1), Ra and Rb are fluorine, alkyl having 1 to 10 carbons or the like, and in the alkyl, at least one of —CH2— may be replaced by —O— or the like, however, Ra and Rb are not identical; A1, A2, A3, A4 and A5 are 1,4-cyclohexylene, 1,4-phenylene or the like, and in the groups, at least one of hydrogen may be replaced by fluorine; Z1, Z2, Z4 and Z5 are a single bond or the like; Y1, Y2, Y3 and Y4 are hydrogen, fluorine or the like; and m, n, q and r are 0, 1 or 2, and a sum of m, n, q and r is 0, 1, 2, 3 or 4.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: December 9, 2014
    Assignees: JNC Corporation, JNC Petrochemical Corporation
    Inventor: Yasuyuki Sasada
  • Patent number: 8816129
    Abstract: The present invention relates to chemical total synthesis methods of six novel protein tyrosine phosphatase-1B (PTP1B) inhibitors and application of the inhibitors in the preparation of medicaments for treating type 2 diabetes mellitus (T2DM). The PTP1B inhibitors use one or more of the six compounds represented by the structural formulae 1, 2, 3, 4, 5 and 6, as active components. The compounds can enhance the sensitivity of an insulin receptor by inhibiting the activity of PTP1B, thereby having a favorable therapeutic effect on insulin-resistant T2DM.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: August 26, 2014
    Assignee: Institute of Oceanology, Chinese Academy of Sciences
    Inventors: Dayong Shi, Shuju Guo, Xiao Fan, Weishen Lu, Yongchao Cui
  • Publication number: 20140179954
    Abstract: Phosphoranimide-metal catalysts and their role in C—O bond hydrogenolysis and hydrodeoxygenation (HDO) are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze C—O bond hydrogenolyses of a range of oxygen-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodeoxygenation.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark Stryker
  • Patent number: 8735632
    Abstract: The invention relates to novel polyglycerol based UV-filters as well as to topical compositions comprising such novel polyglycerol based UV-filters. Furthermore, the invention relates to the use of such novel polyglycerol based UV-filters to enhance the solubility of butyl methoxydibenzoylmethane or bis-ethylhexyloxyphenol methoxyphenyl triazine in cosmetic oils.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: May 27, 2014
    Assignee: DSM IP Assets B.V.
    Inventor: Alexander Schlifke-Poschalko
  • Patent number: 8686196
    Abstract: A liquid crystal medium, which has a liquid crystal phase over a wide temperature range, a large refractive index anisotropy, and a large dielectric anisotropy, and exhibits an optically isotropic liquid crystal phase, is provided. The liquid crystal medium is characterized by containing a liquid crystal compound having four benzene rings and a difluoromethyleneoxy group, and a chiral reagent, and exhibiting an optically isotropic liquid crystal phase.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: April 1, 2014
    Assignees: JNC Corporation, JNC Petrochemical Corporation
    Inventors: Yasuhiro Haseba, Takafumi Kuninobu
  • Patent number: 8603359
    Abstract: A liquid crystal compound having a high stability to heat, light or the like, a high clearing point, a low minimum temperature of a liquid crystal phase, a small viscosity, a suitable optical anisotropy, a large dielectric anisotropy, a suitable elastic constant and an excellent compatibility with other liquid crystal compounds, and a liquid crystal composition including this compound, and a liquid crystal display device containing this composition. A compound represented by formula (1): for example, R1 is alkyl having 1 to 10 carbons; ring A1, ring A2 and ring A3 are 1,4-cyclohexylene, 1,4-phenylene or 1,4-phenylene in which at least one of hydrogen has been replaced by fluorine; Z1 is a single bond, and Z2 and Z3 are —CF2O— or —OCF2—; X1 is fluorine; and L1 and L2 are fluorine.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: December 10, 2013
    Assignees: JNC Corporation, JNC Petrochemical Corporation
    Inventors: Takahiro Kubo, Yasuyuki Goto
  • Publication number: 20130289315
    Abstract: Disclosed is a process for continuously reacting liquid alkylene oxide with a liquid substance including an organic compound with active hydrogen atoms and a catalyst in a reactor.
    Type: Application
    Filed: October 12, 2011
    Publication date: October 31, 2013
    Applicant: BUSS CHEMTECH AG
    Inventors: Rudolf Aigner, David Hirsch, Alfred Lagnaz
  • Patent number: 8557741
    Abstract: What is described are 3-aminocarbonyl-substituted benzoylcyclohexanediones of the formula (I) as herbicides. In this formula (I), R1 to R5 are radicals such as hydrogen, organic radicals such as alkyl, and other radicals such as halogen. X is alkylene.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: October 15, 2013
    Assignee: Bayer CropScience AG
    Inventors: Chieko Ueno, Simon Dörner-Rieping, Andreas Van Almsick, Christopher Hugh Rosinger, Jan Dittgen, Dieter Feucht, Isolde Häuser-Hahn
  • Patent number: 8551359
    Abstract: The present invention relates to liquid-crystalline compounds having two fluorinated biphenyl units, a terminal trifluoromethyl or trifluoromethoxy group and a —CF2O— bridge between the two fluorinated biphenyl units. The invention also relates to liquid-crystalline media prepared therewith and to liquid-crystal display devices (LC displays) containing these media.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: October 8, 2013
    Assignee: Merck Patent GmbH
    Inventors: Axel Jansen, Helmut Haensel, Malgorzata Rillich
  • Patent number: 8471013
    Abstract: The present invention provides a process for reacting between a phenol derivative and an aromatic substrate under phenolate forming conditions comprising the following steps: (a) reacting a phenol derivative with a base in a polar organic solvent to obtain a phenolate salt, wherein water is removed form the reaction mixture during the reaction, (b) adding the aromatic substrate to the reaction mixture obtained in step (a), (c) heating the reaction mixture of step (b) to a temperature in the range of 80° to 1300° C., preferably, 90° to 1000° C. for 2 to 7 hours to obtain a phenoxy substituted aromatic substrate, (d) removing the solvent from the mixture of step (c) and optionally further isolating an purifying the phenoxy substituted aromatic substrate. Optionally, the removal of water during step (a) is in conjunction with partial removal of the organic solvent.
    Type: Grant
    Filed: December 16, 2007
    Date of Patent: June 25, 2013
    Assignee: Makhteshim Chemical Works, Ltd.
    Inventors: David Ovadia, Raya Sturkovich, David Leonov
  • Publication number: 20130113082
    Abstract: Provided is a method of forming a pattern, including (a) forming a chemically amplified resist composition into a film, (b) exposing the film to light, (c) developing the exposed film with a developer containing an organic solvent, and (d) rinsing the developed film with a rinse liquid containing an organic solvent, which rinse liquid has a specific gravity larger than that of the developer.
    Type: Application
    Filed: August 26, 2011
    Publication date: May 9, 2013
    Applicant: FUJIFILM CORPORATION
    Inventors: Yuichiro Enomoto, Shinji Tarutani, Sou Kamimura, Keita Kato, Kana Fujii
  • Publication number: 20130115654
    Abstract: A method for utilizing agricultural biomass components, namely cellulose, hemicellose, and lignin, and converting them to value-added biobased chemical products is described herein. The present method provides treatments to obtain a plurality of component streams from agricultural biomass for producing derivative products while minimizing waste products.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: Thesis Chemistry, LLC
    Inventors: John R. Peterson, Christopher M. Yost, Jian Wu
  • Publication number: 20130115653
    Abstract: A method for utilizing woody biomass components, namely cellulose, hemicellose, and lignin, and converting them to value-added biobased chemical products is described herein. The present method provides treatments to obtain a plurality of component streams from woody biomass for producing derivative products while minimizing waste products.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: Thesis Chemistry, LLC
    Inventors: John R. Peterson, Christopher M. Yost, Jian Wu
  • Patent number: 8436013
    Abstract: The invention features compositions and methods that are useful for treating or preventing AAT deficiency and associated conditions. In addition, the invention provides methods for identifying compounds useful for treatment of AAT deficiency and associated conditions.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: May 7, 2013
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Chen Liu, David A. Ostrov
  • Patent number: 8420853
    Abstract: Disclosed is tonovel cyclic derivatives having potent inhibiting effect on melanin formation and skin hyper-pigmentation activity with no adverse response to skin. They can be used as the therapeutics for treating and preventing the skin disease caused by over-reproduced melanin.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: April 16, 2013
    Assignees: Wonkisopharm Co., Ltd
    Inventors: Hyunchul Cho, Yonghyun Choi, Jonghan Yhei
  • Patent number: 8318973
    Abstract: The present invention relates to compounds of formula I, which are functionalized phenolic compounds, and polymers formed from the same. Ar—[O—(X)p—R?]q??I Polymers formed from the functionalized phenolics are expected to have controllable degradation profiles, enabling them to release an active component over a desired time range. The polymers are also expected to be useful in a variety of medical applications.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: November 27, 2012
    Assignee: Bezwada Biomedical, LLC
    Inventor: Rao S. Bezwada
  • Publication number: 20120209014
    Abstract: A fiber reaction process whereby reactive components contained in immiscible streams are brought into contact to effect chemical reactions and separations. The conduit reactor utilized contains wettable fibers onto which one stream is substantially constrained and a second stream is flowed over to continuously create a new interface there between to efficiently bring about contact of the reactive species and thus promote reactions thereof or extractions thereby. Co-solvents and phase transfer catalysts may be employed to facilitate the process.
    Type: Application
    Filed: March 2, 2012
    Publication date: August 16, 2012
    Applicant: CHEMTOR, LP
    Inventor: John Lee Massingill
  • Publication number: 20120129963
    Abstract: Cardanol derivative comprising one or more units of the formula and a method for obtaining such cardanol derivative.
    Type: Application
    Filed: July 8, 2009
    Publication date: May 24, 2012
    Inventors: Elena Benedetti, Pietro Campaner, Daniele D'Amico, Andrea Minigher, Cristina Stifani, Antonella Tarzia
  • Patent number: 8110614
    Abstract: Adamantane derivatives are provided including a phenolic hydroxyl group-containing adamantane derivative, a glycidyloxy group-containing adamantane derivative, and an adamantyl group-containing epoxy modified acrylate, which exhibit excellent transparency, light resistance, and heat resistance properties. Also provided are resin compositions containing the adamantane derivatives. Further provided are corresponding methods for producing the adamantane derivatives, as well as the resin compositions containing the same.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: February 7, 2012
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Katsuki Ito, Yasunari Okada, Hideki Yamane, Akio Kojima
  • Publication number: 20120029243
    Abstract: The present invention relates to a composition (“composite”) comprising lignin and at least one catalyst dispersed in the composition. The invention further provides a process for producing such a catalyst- and lignin-comprising composition and its use for preparing an aromatics composition.
    Type: Application
    Filed: July 28, 2011
    Publication date: February 2, 2012
    Applicant: BASF SE
    Inventors: Emmanouil PANTOUFLAS, Roman Prochazka, Stephan Schunk
  • Publication number: 20110288240
    Abstract: A phosphazene-supported catalyst in which a support is bonded to a group represented by the general formula (1): wherein n, Zn?, a, b, c, d, R, R1 and D are all defined. The phosphazene-supported catalyst is highly effective to catalyze various organic reactions, and further has no reduction of activity even after recovery and reuse of the catalyst, thus it being economically advantageous. In addition, the polymerization of cyclic monomers, substitution of substituents, carbon-carbon bond forming reactions and the like can be conducted with extremely high efficiency.
    Type: Application
    Filed: August 4, 2011
    Publication date: November 24, 2011
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Naritoshi YOSHIMURA, Shinji Kiyono, Kazumi Mizutani, Isao Hara, Takaomi Hayashi, Tadahito Nobori, Yoshihiro Yamamoto, Miyuki Konno, Yoshihisa Inoue, Akira Matsuura, Tuneyuki Ohkubo
  • Patent number: 8058481
    Abstract: Described is a process for the alkoxylation of alcohols with I, Cl, or CH3CO2 endgroups, using alkylene epoxides in the presence of boron based catalysts.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 15, 2011
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Kenneth Gene Moloy, James A. Schultz
  • Publication number: 20110237838
    Abstract: Processes for conversion of lignin to products such as phenolic compounds and biofuels prepared from such phenolic compounds are disclosed and described. A process for conversion of a lignin material to bio-fuels can include subjecting the lignin material to a base catalyzed depolymerization reaction to produce a partially depolymerized lignin. The partially depolymerized lignin can then be subjected to a stabilization/partial hydrodeoxygenation reaction to form a partially hydrodeoxygenated product. Following partial hydrodeoxygenation, the partially hydrodeoxygenated product can be reacted in a hydroprocessing step to form a bio-fuel. Each of these reaction steps can be performed in single or multiple steps, depending on the design of the process. The production of an intermediate partially hydrodeoxygenation product and subsequent reaction thereof can significantly reduce or eliminate reactor plugging and catalyst coking.
    Type: Application
    Filed: May 6, 2011
    Publication date: September 29, 2011
    Applicant: University of Utah Research Foundation
    Inventors: Wlodzimierz W. Zmierczak, Jan D. Miller
  • Patent number: 8022252
    Abstract: Novel spatially-defined macrocyclic compounds containing specific conformational control elements are disclosed. Libraries of these macrocycles are then used to select one or more macrocycle species that exhibit a specific interaction with a particular biological target. In particular, compounds according to the invention are disclosed as agonists or antagonists of a mammalian motilin receptor and a mammalian ghrelin receptor.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: September 20, 2011
    Assignee: Tranzyme Pharma Inc.
    Inventors: Pierre Deslongchamps, Yves Dory, Kamel Benakli, Éric Marsault, Luc Ouellet, Mahesh Ramaseshan, Martin Vezina, Daniel Fortin, Ruoxi Lan, Shigui Li, Gérald Villeneuve, Hamid R. Hoveyda, Sylvie Beaubien, Mark L. Peterson
  • Patent number: 7828991
    Abstract: This invention relates to novel polyether polyols which are prepared by alkoxylation of renewable resource materials, and particularly cashew nutshell liquid (CNSL), and to a process for the preparation of these novel polyether polyols. This invention also relates to flexible polyurethane foams prepared from these long chain polyether polyols, and to a process for the production of these flexible polyurethane foams.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: November 9, 2010
    Assignee: Bayer MaterialScience LLC
    Inventors: Jack R. Reese, Micah N. Moore, Don S. Wardius, Stanley L. Hager
  • Publication number: 20100234629
    Abstract: A method for producing an optically active alcohol compound comprising reacting a cyclic ether compound with a phenol compound in the presence of an asymmetric complex obtained by reacting an optically active metal complex represented by the formula (1): wherein R1, R2, R3, R4, R5, R6, R7 and R8 are the same or different and each independently represent a hydrogen atom, an alkyl group or the like; one of R9 and R10 is a hydrogen group and the other is a substituted or unsubstituted phenyl group or the like; Q represents a single bond, a C1-C4 alkylene group or the like; M represents a metal ion; and when an ionic valency of the metal ion is same as a coordination number of a ligand, A is nonexistent, and when the above-mentioned ionic valency is different from the coordination number, and A represents a counter ion or a ligand, with a metal sulfonate.
    Type: Application
    Filed: January 31, 2007
    Publication date: September 16, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Kazuaki Sasaki
  • Patent number: 7728179
    Abstract: A method for producing an optically active alcohol compound comprising reacting a cyclic ether compound with a phenol compound in the presence of an asymmetric complex obtained by reacting an optically active metal complex represented by the formula (1): wherein R1, R2, R3, R4, R5, R6, R7 and R8 are the same or different and each independently represent a hydrogen atom, an alkyl group or the like; one of R9 and R10 is a hydrogen group and the other is a substituted or unsubstituted phenyl group or the like; Q represents a single bond, a C1-C4 alkylene group or the like; M represents a metal ion; and when an ionic valency of the metal ion is same as a coordination number of a ligand, A is nonexistent, and when the above-mentioned ionic valency is different from the coordination number, and A represents a counter ion or a ligand, with a zirconium alkoxide or a hafnium alkoxide.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: June 1, 2010
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Kazuaki Sasaki
  • Patent number: 7667075
    Abstract: A diamine of formula (I) is described, in which A is hydrogen or a saturated or unsaturated C1-C20 alkyl group or an aryl group; B is a substituted or unsubstituted C1-C20 alkyl, cycloalkyl, alkaryl, alkaryl or aryl group or an alkylamino group and at least one of X1, X2, Y1, Y2 or Z is a C1-C10 alkyl, cycloalkyl, alkaryl, aralkyl or alkoxy substituting group. The chiral diamine may be used to prepare catalysts suitable for use in transfer hydrogenation reactions.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: February 23, 2010
    Assignee: Bial - Portela & CA, S.A.
    Inventors: Beatriz Dominguez, Antonio Zanotti-Gerosa, Gabriela Alexandra Grasa, Jonathan Alan Medlock
  • Patent number: 7601867
    Abstract: A diamine of formula (I) is described, in which A is hydrogen or a saturated or unsaturated C1-C20 alkyl group or an aryl group; B is a substituted or unsubstituted C1-C20 alkyl, cycloalkyl, alkaryl, alkaryl or aryl group or an alkylamino group and at least one of X1, X2, Y1, Y2 or Z is a C1-C10 alkyl, cycloalkyl, alkaryl, aralkyl or alkoxy substituting group. The chiral diamine may be used to prepare catalysts suitable for use in transfer hydrogenation reactions.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: October 13, 2009
    Assignee: Bial-Portela & CA, S.A.
    Inventors: Beatriz Dominguez, Antonio Zanotti-Gerosa, Gabriela Alexandra Grasa, Jonathan Alan Medlock
  • Publication number: 20090240078
    Abstract: Multifunctional alcohols, polyols derived from cardanol containing at least 3 hydroxyl groups are disclosed. Such alcohols allow for synthesis of multifunctional crosslinkers such as acrylates, epoxies, and vinyl ethers and flame retardants such as >phosphates. The multifunctional alcohols or polyols can be used in polyurethanes and polycarbonates. The multifunctional crosslinkers can be used in optical coating and waveguide compositions to increase curing speed and crosslink density. The multifunctional phosphates can be used in flame resistant plastics as the highly pendant phosphorus containing phosphate non-halogen flame retardant additives.
    Type: Application
    Filed: December 30, 2005
    Publication date: September 24, 2009
    Applicant: COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH
    Inventors: Vadakkethonippurathu Sivankutty Nair Prasad, Chennakkattu Krishna Sadasivan Pillai
  • Patent number: 7528271
    Abstract: The present invention discloses a new process for the preparation of 1,4-benzoquiones of formula (II) wherein R1, R2, R3 and R4 are independently selected from the group consisting of branched or unbranched C1-C6 alkyl, phenyl and benzyl, wherein phenyl and benzyl is optionally substituted by one or more substituent independently selected from the group consisting of C1-C6 alkyl and halogen, and wherein C1-C6 alkyl is optionally substituted with one or more halogen susbstituents, and wherein R2 and R3 together can form a C1-C6-alkylene radical, optionally substituted by one or more susbstituents independently selected from the group comprising C1-C6, benzyl, phenyl and halogen. One preferred compound is 2,3-dimethoxy-5-methyl-[1,4]benzoquinone, also known as coenzyme Q0 (CoQ0). Also disclosed are novel compounds and intermediates, and a method for the preparation of coenzyme Qn, preferable the coenzyme Q10.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: May 5, 2009
    Assignee: Bergen Teknologioverforing AS
    Inventor: Hans-René Bjørsvik
  • Publication number: 20090012330
    Abstract: A method for producing an optically active alcohol compound comprising reacting a cyclic ether compound with a phenol compound in the presence of an asymmetric complex obtained by reacting an optically active metal complex represented by the formula (1): wherein R1, R2, R3, R4, R5, R6, R7 and R8 are the same or different and each independently represent a hydrogen atom, an alkyl group or the like; one of R9 and R10 is a hydrogen group and the other is a substituted or unsubstituted phenyl group or the like; Q represents a single bond, a C1-C4 alkylene group or the like; M represents a metal ion; and when an ionic valency of the metal ion is same as a coordination number of a ligand, A is nonexistent, and when the above-mentioned ionic valency is different from the coordination number, and A represents a counter ion or a ligand, with a zirconium alkoxide or a hafnium alkoxide.
    Type: Application
    Filed: January 31, 2007
    Publication date: January 8, 2009
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Kazuaki Sasaki
  • Publication number: 20080262246
    Abstract: The invention related to a novel process, novel process steps and novel intermediates useful in the synthesis of pharmaceutically active compounds, especially renin inhibitors, such as Aliskiren. Inter alia, the invention relates to a process for the manufacture of a compound of the formula II, or a salt thereof, and a compound of formula VI or a salt thereof, wherein R3 and R4 as well as Act are as defined in the specification, and processes of manufacturing these. Additionally transformation of compounds (VI) with metallo organic compounds (VII) give rise to the new compounds (VIII) which are direct precursors for the preparation of Aliskiren.
    Type: Application
    Filed: October 16, 2006
    Publication date: October 23, 2008
    Inventors: Gottfried Sedelmeier, Dominique Grimler, Murat Acemoglu
  • Publication number: 20080221347
    Abstract: Sulfonate leaving groups include a cation chelating moiety, e.g. a polyether or crown ether. The chelating moiety stabilizes the sulfonate leaving group by forming a complex with a cation of a cation-nucleophile combination. The stabilized leaving group is more easily displaced under many conditions than are standard arylsulfonate leaving groups such as the toxyl group. The chelating moiety also favors certain cations depending on the identity of the moiety thereby enhancing the reaction rate with nucleophilic salts containing the preferred cation. Use of the inventive leaving groups results in improved yields, decreased reaction times and improved product purity.
    Type: Application
    Filed: November 14, 2005
    Publication date: September 11, 2008
    Inventor: Salvatore Lepore
  • Patent number: 7393465
    Abstract: A process for preparing hydrophobic polyols that includes reacting A) a mixture having an OH content of from 180 to 300 mg KOH/g, a viscosity at 23° C. of from 5000 to 20 000 mPas and an OH functionality of from 2.8 to 4.5 including from 5 to 20 wt. % of 3-pentadecadienylphenol, from 5 to 10 wt. % of 3-pentadecadienyl-recorcinol and from 1 to 5 wt. % of 2-methyl 3-pentadecadienylrecorcinol; with B) alkylene oxides (AO) with addition of the AO monomers onto the AO-reactive groups of component A); the ratio of the amounts of A) to B) being from 1:9 to 9:1; where the hydrophobic polyols have an OH number of from 140 to 220 mg KOH/g and a viscosity at 23° C. of from 1000 to 4000 mPas. The hydrophobic polyols can be used in polyurethane systems, in coatings, adhesive bonds, sealants or moulding compounds, which can be used to coat substrates.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: July 1, 2008
    Assignee: Bayer MaterialScience AG
    Inventors: Meike Niesten, Jack Reese, Joachim Simon, Gerhard Ruttmann
  • Patent number: 7323119
    Abstract: The present invention relates to the color stabilization of hydroquinone hydroxyethyl ethers by phosphite compounds containing the bis-cyclic structure of spiro phosphites, both rings being attached to the same tertiary carbon atom in the phosphite molecule.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: January 29, 2008
    Assignee: Arch Chemicals, Inc.
    Inventors: Jayne Mallwitz, Robert C. Hire, Kiran B. Chandalia
  • Patent number: 7220784
    Abstract: The present invention relates to stilbene and quinone compounds related to combretastatin A-4 and their use as anticancer compounds and prodrugs. The compounds include those with an alkyl group on the double bond of cis or trans-stilbenes, compounds with one or more (and preferably 2 or 3) alkyl group substituents on the stilbene A ring, compounds with an alkoxy group other than methoxy at position 3, 4, and/or 5 of the stilbene A ring, compounds (or prodrugs) in which BOC amino acid esters are formed with the phenolic hydroxyl at the 3-position of the B ring and compounds (or prodrugs) based on a benzoquinone B ring. The present invention further relates to the photochemical reactions of stilbene compounds, either the above compounds disclosed for the first time herein or compounds based on prior art stilbenes.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: May 22, 2007
    Inventors: John Anthony Hadfield, Alan Thomson McGown, Stephen Patrick Mayalarp, Edward John Land, Ian Hamblett, Keira Gaukroger, Nicholas James Lawrence, Lucy Annette Hepworth, John Butler
  • Patent number: 7192651
    Abstract: A resin composition for a laminate, containing at least 10% by weight of a vinyl compound represented by the formula (1), and a prepreg and a metal-clad laminate using the resin composition.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: March 20, 2007
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Daisuke Ohno, Kenji Ishii, Yasumasa Norisue, Michio Nawata, Yoshinori Kondo, Mitsuru Nozaki, Seiji Shika
  • Patent number: 7179946
    Abstract: The invention relates to copper complexes of phosphorus compounds, to a process for their preparation and to their use in catalytic coupling reactions.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: February 20, 2007
    Assignee: Lanxess Deutschland GmbH
    Inventors: Ulrich Scholz, Klaus Kunz, Oliver Gaertzen, Jordi Benet-Buchholz, Joachim Wesener
  • Patent number: 7122708
    Abstract: The invention relates to high-functionality polyether polyols of the general formula where each R?1 is an unsubstituted or substituted aliphatic or aromatic radical and each R?2 is an unsubstituted or substituted aliphatic or aromatic radical, H, OH, polyalkyl ether chain or halogen, each X is a polyalkyl ether chain or H, where at least one X is a polyalkyl ether chain, and m is an integer from 0 to 20, where Xm is H when m is 0, and n is an integer from 4 to 12, to processes for preparing such high-functionality polyether polyols and also to the use thereof for preparing polyurethanes and nonionic surfactants.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: October 17, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Peter Böhme, Michael Pcolinski, Udo Rotermund, Wolf-Dieter Habicher, Antje Ziemer
  • Patent number: 7115784
    Abstract: The present invention relates to copper-catalyzed carbon-heteroatom and carbon-carbon bond-forming methods. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of an amide or amine moiety and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In additional embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between a nitrogen atom of an acyl hydrazine and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In other embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of a nitrogen-containing heteroaromatic, e.g., indole, pyrazole, and indazole, and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: October 3, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Stephen L. Buchwald, Artis Klapars, Jon C. Antilla, Gabriel E. Job, Martina Wolter, Fuk Y. Kwong, Gero Nordmann, Edward J. Hennessy
  • Patent number: 7109164
    Abstract: New thyroid receptor ligands are provided which have the general formula in which: X is —O—, —S—, —CH2—, —CO—, or —NH—; Y is —(CH2)n— where n is an integer from 1 to 5, or cis- or trans-ethylene; R1 is halogen, trifluoromethyl, or alkyl of 1 to 6 carbons or cycloalkyl of 3 to 7 carbons; R2 and R3 are the same or different and are hydrogen, halogen, alkyl of 1 to 4 carbons or cycloalkyl of 3 to 6 carbons, at least one of R2 and R3 being other than hydrogen; R4 is hydrogen or lower alkyl; R5 is hydrogen or lower alkyl; R6 is carboxylic acid, or esters or prodrugs; R7 is hydrogen or an alkanoyl or an aroyl. In addition, a method is provided for preventing, inhibiting or treating a disease associated with metabolism dysfunction or which is dependent upon the expression of a T3 regulated gene, wherein a compound as described above is administered in a therapeutically effective amount.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: September 19, 2006
    Assignee: Bristol-Myers Squibb Company
    Inventors: Todd J. Friends, Denis E. Ryono, Minsheng Zhang
  • Patent number: 7105707
    Abstract: Mono- and disubstituted aryl or heterocyclic acetylenes are produced by a process comprising reacting an aryl nitrile with an alkynylzinc compound, a bis-alkynylzinc compound, or an alkynylmagnesium compound, in the presence of a nickel/phosphine catalyst.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: September 12, 2006
    Assignee: PharmaCore, Inc.
    Inventors: Joseph A. Miller, Jonathan M. Penney
  • Patent number: 6995195
    Abstract: There are provided a vinyl compound which is excellent in heat resistance and electric characteristics and excellent in reactivity by introducing a vinyl group into a terminal of a bifunctional polyphenylene ether oligomer, and a cured product thereof which has a high glass transition temperature, has a low dielectric constant and a low dielectric loss tangent and has the excellent properties of polyphenylene ether.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: February 7, 2006
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kenji Ishii, Yasumasa Norisue, Daisuke Ohno, Makoto Miyamoto
  • Patent number: 6994804
    Abstract: The present invention relates to the color stabilization of hydroquinone hydroxyethyl ethers by phosphite compounds containing the bis-cyclic structure of spiro phosphites, both rings being attached to the same tertiary carbon atom in the phosphite molecule.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: February 7, 2006
    Assignee: Arch Chemicals, Inc.
    Inventors: Jayne Mallwitz, Robert C. Hire, Kiran B. Chandalia
  • Patent number: 6930208
    Abstract: What is described are derivatives of benzoylcyclohexanediones of the formula (I) and their use as herbicides. In this formula (I), R1a, R1b, R1c, R2, R3, R4 and R5 denote various radicals, X1 is a bridging atom, X2 is a carbon chain and X3 is a chalcogen atom or an oximino radical.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: August 16, 2005
    Assignee: Bayer CropScience GmbH
    Inventors: Thomas Seitz, Andreas van Almsick, Lothar Willms, Monika H. Schmitt, Thomas Auler, Hermann Bieringer, Hubert Menne
  • Patent number: 6881868
    Abstract: Compounds of formula (I), wherein R1 and R2 are, independently of one another, H,C1-C6alkyl, C1-C6halogenalkyl, C1-C6alkoxyl, C1-C6alkoxy-C1-C6alkyl, or C1-C6alkoxy-C1-C6alkyloxy, and R3 is C1-C6alkyl, are obtainable in high yiedls by stereoselective addition of R3-substituted propionic acid esters to R1- and R2-substituted benzaldehydes of formula R—CHO to form corresponding 3-R-3-hydroxy-2-R3-propionic acid esters, conversion of the OH group to a leaving group, subsequent regioselective elimination to form 3-R-2-R3-propenic acid esters, and reduction to corresponding 3-R-2-R3-allyl alcohols and their enantioselective hydrogenation, wherein R is (a).
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: April 19, 2005
    Assignee: Speedel Pharma AG
    Inventors: Stefan Stutz, Peter Herold, Felix Spindler, Walter Weissensteiner, Thomas Sturm
  • Patent number: 6869543
    Abstract: Clear, amine-initiated polyether polyols are made by epoxidizing an amine in the presence of an alkali metal hydroxide catalyst. By reducing the amount of catalyst used during the polyol synthesis and by adding the catalyst after between 5 and 30% of the total amount of at least one alkylene oxide has been added, after lactic acid neutralization, gives a short chain polyol that has foam processing characteristics similar to the conventional sulfuric acid neutralized polyol. The polyols produced in this manner are particularly useful for the production of polyurethane and polyisocyanurate foams.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: March 22, 2005
    Assignee: Bayer Polymers LLC
    Inventors: Nathan L. Anderson, Karl W. Haider, Keith J. Headley, Kerry A. Ingold, Herman P. Doerge