Abstract: A reversible drill/driver tool includes an elongated socket having a bifurcated part defining a tool-receiving space to receive a two-ended tool that includes first and second driving bits and a rod having two opposite ends connected respectively to the first and second driving bits, and pivoted to the bifurcated part so as to be rotatable relative to the socket and so as to dispose a selected one of the first and second driving bits outwardly of the space. A positioning member is slidable on the socket to position the rod at a desired position.
Abstract: An optical system for projection photolithography is disclosed. The optical system is a modified Dyson system capable of imaging a large field over a broad spectral range. The optical system includes a positive lens group having three elements: a plano-convex element and two negative meniscus elements. The lens group is arranged adjacent to but spaced apart from a concave mirror along the mirror axis. A projection photolithography system that employs the optical system is also disclosed.
Abstract: A method and apparatus for masking a workpiece with a layer of ink from an inkjet head is disclosed. The masking prevents exposure of select regions of a photosensitive workpiece. The apparatus includes a workpiece pre-aligner for movably supporting and aligning the workpiece. The inkjet head is arranged to be in operable communication with the photosensitive layer of the workpiece when positioned on the pre-aligner and is adapted for providing a select mask of opaque ink on a photosensitive layer. Where the photosensitive layer is a negative tone photoresist, upon exposure the portion of the photosensitive layer that is not exposed because of the presence of the mask is removed upon developing. In this manner, select regions of the workpiece can be kept clear of photoresist or otherwise patterned with indicia such as alphanumeric symbols or barcodes.
Abstract: A 1X projection optical system for deep ultra-violet (DUV) photolithography is disclosed. The optical system is a modified Dyson system capable of imaging a relatively large field at high numerical apertures at DUV wavelengths. The optical system includes a lens group having first and second prisms and four lenses having a positive-negative-positive negative arrangement as arranged in order from the prisms toward the mirror. A projection photolithography system that employs the projection optical system of the invention is also disclosed.
Abstract: A symmetrically loaded, shallow suspension speaker with stiff diaphragm having a minimum dimension that is greater than the diameter of the magnet that drives the diaphragm thus allowing the suspension of the diaphragm to extend nearly to the bottom of the speaker basket on the maximum inward excursion of the voice coil and diaphragm such that the suspension operational depth is not the limiting factor of the overall height of the speaker. The elements of the suspension system are designed to maximize the spacing between the inner and outer portions of the suspension, thus minimizing the possibility of wobble in the speaker. The speaker design maximizes air movement in a given mounting depth with a configuration that optimizes the operation of the moving parts that complements the fixed mechanical structural configuration of the non-moving parts in either an overhung or underhung configuration. The design also accommodates user replacement of the voice coil or cone.
Abstract: A linearly compliant, flexible, resilient and flat speaker damper connected between the frame and the cone of the speaker with electrically conductive paths applied to the damper to conduct the signal to be applied to the voice coil of the speaker. A method for linearly compliant audio speaker damping and a method for application of voice coil conductors on the damper.
Abstract: Methods and systems for performing laser thermal processing (LTP) of semiconductor devices are disclosed. The method includes forming a dielectric cap atop a temperature-sensitive element, and then forming an absorber layer atop the dielectric layer. A switch layer may optionally be formed atop the absorber layer. The dielectric cap thermally isolates the temperature-sensitive element from the absorber layer. This allows less-temperature-sensitive regions such as unactivated source and drain regions to be heated sufficiently to activate these regions during LTP via melting and recrystallization of the regions, while simultaneously preventing melting of the temperature-sensitive element, such as a poly-gate.
Abstract: Architecture and method to transfer data in generation, display or printing high edge placement accuracy images from multiple exposure of plurality of predefined patterns with lower edge placement accuracy. A pattern is laid out on a grid finer or different from grid size of image transducer pixel size, overlaid by transducer grid and converted to n patterns compatible with transducer grid. When combined by partial exposures weighting patterns unevenly, the n patterns generate an image with line edge positions a fraction (1/(2n−1)) of transducer grid size. For most picture display and step-and-repeat lithography applications, pattern stored in first memory is displayed or partially exposed once, and remaining patterns are displayed or partially exposed 2m−1 times m being copy number of the pattern. Superimposing 2n−1 exposures in human eye to scene integration time, picture with improved line placement accuracy is perceived.
Abstract: A method of this invention includes annealing at least one region of a substrate with a short pulse of particles. The particles can be electrons, protons, alpha particles, other atomic or molecular ions or neutral atoms and molecules. The substrate can be composed of a semiconductor material, for example. The particles can include dopant atoms such as p-type dopant atoms such as boron (B), aluminum (Al), gallium (Ga), or indium (In), and n-type dopant atomic species including arsenic (As), phosphorus (P), or antimony (Sb). The particles can also include silicon (Si) or germanium (Ge) atoms or ionized gas atoms including those of hydrogen (He), oxygen (O), nitrogen (N), neon (Ne), argon (Ar), or krypton (Kr). The particles can be used to anneal dopant atoms previously implanted into the substrate.
Type:
Grant
Filed:
March 27, 2000
Date of Patent:
November 30, 2004
Assignee:
Ultratech, Inc.
Inventors:
Andrew M. Hawryluk, David A. Markle, Somit Talwar
Abstract: The amplifier of the present invention causes variations in the rail voltage that are controlled by the frequency of the audio signal being amplified as the audio signal changes. This is done to tune the operation of the amplifier taking into consideration the frequency response of the human ear. By doing so, the resulting amplifier is more efficient at lower frequencies where more signal distortion is required before it can be heard by the human ear, and a higher quality signal output is provided at higher frequencies where the human ear can more readily detect distortion. Thus by designing the amplifier from the listener's point of view results in an amplifier with much improved performance from both technical and listener points of view.
Abstract: An optical system for projection photolithography is disclosed. The optical system is a modified Dyson system capable of imaging a large field over both a narrow and a broad spectral range. The optical system includes a positive lens group having a positive subgroup of elements that includes at least a plano-convex element and a negative subgroup that includes at least a negative meniscus element. The lens subgroups are separated by a small air space. The positive and negative subgroups constitute a main lens group arranged adjacent to but spaced apart from a concave mirror along the mirror axis. The system also includes a variable aperture stop so that the system has a variable NA. A projection photolithography system that employs the optical system is also disclosed.
Abstract: Provided is a test system and method that permits automatically interchanging a plurality of tools to seamlessly perform various functions on a sample. Each tool is mounted in an assembly and the sample is mounted on a chuck. A path is defined in a plane along which a carriage on which the tool assemblies are mounted is transported with the tools each positioned in the same attitude with respect to, and distance from, that path. The carriage is transported along the path to a position where one of the tools is adjacent the chuck which is rotated, if necessary, to position a desired point of interest on the sample immediately adjacent the tool. Once positioned, the tool engages the sample to perform a test. Following testing, the tool is disengaged from the sample and the process repeated as necessary for each additional test to be performed on the sample.
Abstract: Apparatus and methods for reducing optical distortion in an optical system by thermal means are disclosed. The apparatus includes a heating/cooling system spaced apart from and in thermal communication with an internally reflecting surface of a refractive element in the optical system. The heating/cooling system is adapted to create a select temperature distribution in the refractive optical element near the internally reflecting surface to alter the refractive index and/or the surface profile in a manner that reduces residual distortion.
Abstract: A method of forming a doped polycrystalline silicon gate in a Metal Oxide Semiconductor (MOS) device. The method includes forming first an insulation layer on a top surface of a crystalline silicon substrate. Next, an amorphous silicon layer is formed on top of and in contact with the insulation layer and then a dopant is introduced in a top surface layer of the amorphous silicon layer. The top surface of the amorphous silicon layer is irradiated with a laser beam and the heat of the radiation causes the top surface layer to melt and initiates explosive recrystallization (XRC) of the amorphous silicon layer. The XRC process transforms the amorphous silicon layer into a polycrystalline silicon gate and distributes the dopant homogeneously throughout the polycrystalline gate.
Abstract: A magnetic levitation (maglev) stage apparatus and method is disclosed. The maglev stage includes a movable platen having an upper surface capable of supporting a workpiece. A set of magnet arrays is arranged on the bottom surface of the platen, and first and second side magnet arrays are arranged on opposite sides of the platen. A support frame at least partially surrounds the platen on the first and second sides and the bottom surface. A plurality of motor coils is arranged on the support frame so as to be in operable communication with the set of magnet arrays and the side magnet arrays. The magnet arrays and motor coils are operable to magnetically levitate the platen within the support frame and move the platen in up to six degrees of freedom (DOF), with all forces directed through the center-of-gravity of the platen along the DOF axes. Movable counterweights may also be employed to facilitate the smooth movement of the platen.
Abstract: An inflatable bed has a bottom surface that is disposed on a support surface and that is formed with a concave air bag. When a person moves onto a top surface of the bed, air is ejected from the air bag so that the bed acts as a suction cup, there by fixing the bed relative to the support surface.
Abstract: A lithography system and method for cost-effective device manufacture that can employ a continuous lithography mode of operation is disclosed, wherein exposure fields are formed with single pulses of radiation. The system includes a pulsed radiation source (14), an illumination system (24), a mask (M), a projection lens (40) and a workpiece stage (50) that supports a workpiece (W) having an image-bearing surface (WS). A radiation source controller (16) and a workpiece stage position system (60), which includes a metrology device (62), are used to coordinate and control the exposure of the mask with radiation pulses so that adjacent radiation pulses form adjacent exposure fields (EF). Where pulse-to-pulse uniformity from the radiation source is lacking, a pulse stabilization system (18) may be optionally used to attain the desired pulse-to-pulse uniformity in exposure dose.
Abstract: Apparatus and methods for thermally processing a substrate with scanned laser radiation are disclosed. The apparatus includes a continuous radiation source and an optical system that forms an image on a substrate. The image is scanned relative to the substrate surface so that each point in the process region receives a pulse of radiation sufficient to thermally process the region.
Type:
Grant
Filed:
November 6, 2002
Date of Patent:
June 8, 2004
Assignee:
Ultratech Stepper, Inc.
Inventors:
Somit Talwar, Michael O. Thompson, David A. Markle
Abstract: Systems and methods for reducing colinearity effects in the formation of microdevices are disclosed. A mask with at least one column of microdevice cells is illuminated with pulses of radiation such that only a single column is illuminated. Images of the column are used to form adjacent columnar exposure fields on a workpiece. The columnar exposure fields so formed each have a width much less than that of the full exposure field capable of being formed by the projection lens. One method of the invention includes forming each columnar exposure field with a single pulse of radiation while the workpiece moves continuously relative to a projection lens and mask. Another method includes forming each columnar exposure field with a burst of radiation pulses or a long continuous pulse while stepping the workpiece beneath a projection lens between bursts. By forming columnar exposure fields that contain a single row of devices, a substantial number of error sources that contribute to co-linearity error are eliminated.