Patents Represented by Attorney John J. Patti
  • Patent number: 8189817
    Abstract: System for pulse-width-modulated class D audio amplifiers. In one preferred embodiment an adder is described to generate a difference signal responsive to an input signal and a feedback signal, a pulse-width-modulator coupled to the adder to compare the difference signal to a reference signal and produce a pulse-width-modulated signal based on the comparing, a filter coupled to an output of the pulse-width-modulator, and a loop filter having a first input coupled to the output of the filter and a second input coupled to the input of the filter, the loop filter to generate a feedback signal by applying transfer functions to signals at its inputs. The loop transfer function of the amplifier is minimum aliasing error transfer function. The minimum aliasing error properties provide low distortion and taking the feedback from the output of the filter reduces high frequency output impedance.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: May 29, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Lars Risbo, Soeren Poulsen
  • Patent number: 8189309
    Abstract: In many applications, particularly in automotive applications, integrated circuits (IC) are designed to withstand large fly-back currents from inductive loads. As these ICs have become smaller, the switching transistors (which are coupled to the inductive loads) have remained relatively large so as to withstand the fly-back currents. The size of these switching transistors has become a limiting factor in designing compact ICs. Here, an IC is provided with an adaptive clamp that allows for a significant reduction in the area of a switching transistor for an inductive load.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: May 29, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Timothy P. Duryea
  • Patent number: 8189284
    Abstract: A quiet retraction method for regulating constant velocity while parking an arm within a disk drive is described. The method comprises the steps of: driving a motor for the arm using a first drive current for a first period; floating the motor; sampling a back electromotive force (bemf) for a first sampled voltage, while floating the motor; driving the motor with a second drive current during a second period in response to sampling the bemf; determining whether the second drive current exceeds a current limit; estimating the bemf using the first sampled voltage when the second drive current exceeds the current limit; driving the motor with a third current during a third period in response to estimating the bemf; wherein driving the motor with the first, second, and third currents quietly parks the arm, while regulating the constant velocity.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: May 29, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Triet Minh Tieu
  • Patent number: 8166286
    Abstract: The invention relates to a data pipeline comprising a first stage with a data input for receiving a digital data input signal, a clock input and a data output, and a first bi-stable element being adapted to be switched in response to an edge of a first clock signal, and a dynamic latch stage comprising an input transfer element, and a second bi-stable element coupled between the input transfer element and a dynamic latch data output, wherein the input transfer element is adapted to be switched by a second clock signal and a delayed second clock signal, which is delayed with respect to the second clock signal by a first period of time being shorter than half a period of the second clock signal, such that the input transfer element allows signal transfer only during the first period of time.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: April 24, 2012
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Ingolf Frank, Gerd Rombach
  • Patent number: 8164386
    Abstract: In one example, an amplifier for providing stable output quiescent current comprising includes a number of supply rails, an output device configured for providing an output voltage, the output device coupled to the plurality of supply rails, and an output quiescent current controller coupled to the plurality of supply rails and the output device, the output quiescent current controller to regulate the voltage in the output device to provide a consistent quiescent current in the output device.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: April 24, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Leland Scott Swanson
  • Patent number: 8164364
    Abstract: A differential input circuit (1-1) includes first (Q0) and second (Q1) input transistors having control electrodes coupled to first (Vin+) and second (Vin?) input signals, respectively. A pass transistor (P3) is coupled between first electrodes of the first and second input transistors. First (N1) and second (N2) level shift transistors have control electrodes coupled to the first and second input signals, respectively. A voltage selector circuit (22) selects a voltage on a first electrode of one of the first and second level shift transistors according to which is at a higher voltage, and produces a corresponding control voltage (V19) on a control electrode of the pass transistor so as to limit a voltage difference between the first electrode and the control electrode of the first input transistor (Q0) when it is turned off in response to a large difference between the first and second input signals.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: April 24, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Jerry L. Doorenbos, Sudarshan Udayashankar
  • Patent number: 8159382
    Abstract: With Successive Approximation Register (SAR) analog-to-digital converters (ADCs), there are several different architectures. One of these architectures is a “convert and shut down” architecture, where an internal amplifier is powered down during the sampling phase to reduce power consumption. This powering down comes at a price in that a portion of the convert phase is lost waiting for the amplifier to be powered back up. Here, an apparatus is provided that makes use of the entire convert phase by coarsely resolving a few bits during the period in which the amplifier is powering up to have an increased resolution over conventional SAR ADCs with “convert and shut down” architecture, while maintaining low power consumption.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: April 17, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Raghu N. Srinivasa, Sandeep K. Oswal
  • Patent number: 8159207
    Abstract: An LDO regulator (10) produces an output voltage (Vout) by applying the output voltage to a feedback input (6) of a differential input stage (10A) and applying an output (3) of the differential input stage to a gate of a first follower transistor (MP4) having a source coupled to an input (8) of a class AB output stage (10C) which generates the output voltage. Demanded load current is supplied by the output voltage during a dip in its value to a gate of a second follower transistor (MP5) having a gate coupled to the output of the input stage to decrease current in a current mirror (MN5,6) having an output coupled to a current source (I1) and a gate of an amplifying transistor (MN7). This causes the current source to rapidly turn on the amplifying transistor to cause it to rapidly turn on a cascode transistor (MN3), causing it to turn on a pass transistor (MP3) of the output stage.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: April 17, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Vadim V. Ivanov, Keith E. Kunz
  • Patent number: 8154350
    Abstract: An apparatus is provided. The apparatus comprising a voltage controlled oscillator (VCO), an amplifier, a switch, a calibration capacitor, and a control loop. The VCO includes a capacitive network that receives a first tuning voltage that is based at least in part on an input signal and a switched capacitor array that is coupled to the capacitive network. The amplifier amplifies the difference between the reference voltage and the first tuning voltage. The switch receives the reference voltage and the amplified difference between the reference voltage and the first tuning voltage. The calibration capacitor receives the output from the switch and generates a second tuning voltage. The control loop receives the input signal and the second tuning voltage.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: April 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Kevin G. Faison
  • Patent number: 8148228
    Abstract: A method for manufacturing a semiconductor device that comprises implanting a first dopant type in a well region of a substrate to form implanted sub-regions that are separated by non-implanted areas of the well region. The method also comprises forming an oxide layer over the well region, such that an oxide-converted first thickness of the implanted sub-regions is greater than an oxide-converted second thickness of the non-implanted areas. The method further comprises removing the oxide layer to form a topography feature on the well region. The topography feature comprises a surface pattern of higher and lower portions. The higher portions correspond to locations of the non-implanted areas and the lower portions correspond to the implanted sub-regions.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: April 3, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer Pendharkar, Binghua Hu, Xinfen Celia Chen
  • Patent number: 8143812
    Abstract: An output stage for an LED driver is provided. In particular, a low voltage clamp, which uses several cascode circuits, is provided to protect low voltage switching transistors in the range of two times higher voltage application under both normal and fault conditions. Additionally, a circuit for regulating the bias voltage applied to each of the cascode circuits is provided to prevent damage during startup, while an internal voltage regulator is settling.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: March 27, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Chienyu Huang, Abidur Rahman, Huijuan Li
  • Patent number: 8143944
    Abstract: Recently, there has been an increased desire to measure load currents of class-D amplifiers to improve performance. The traditional solution has been to include one or more discrete components in series with the load, but this degrades performance. Here, however, circuit is provided (which includes sample-and-hold circuit) that accurately measures load currents without inhibiting performance and that is not inhibited by the phase differences between the load voltage and load current.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: March 27, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Patrick P. Siniscalchi, Mayank Garg, Roy Clifton Jones, III
  • Patent number: 8140881
    Abstract: The network node includes a local crystal oscillator for providing a time reference derived from the clock signal produced by the local crystal oscillator, a reset stage for resetting the network node in response to a bus reset pulse received through the network and a control means for issuing a bus reset pulse of a predetermined length substantially greater than a clock period of the clock signal of the local crystal oscillator. Further the network node includes a bus reset detector for determining a length of the received bus reset pulse based on the local time reference. The bus reset detector in the network node is also adapted to adjust the local time reference based on the determined length of the received bus reset pulse.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: March 20, 2012
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Johann Zipperer
  • Patent number: 8134318
    Abstract: A system for implementing current shaping for retract of a voice coil motor (VCM) includes drive circuitry coupled to drive the VCM according to a logic state of the system. Current shaping circuitry is configured to temporarily decrease the bandwidth of a VCM transconductance loop in response to a control signal. The transconductance loop includes at least the VCM, the current shaping circuitry and the drive circuitry. The system also includes logic configured to provide the control signal at an end portion a drive logic state to enter a current shaping logic state as a transition from the drive logic state to a floating logic state to reduce current through the VCM such that acoustic emissions from the VCM are mitigated during the retract.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: March 13, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Julio Enrique Ayala, II, Juergen Luebbe
  • Patent number: 8134710
    Abstract: A particulate detector system is provided that can sense particulates (such as smoke in the air). The system employs a reflected light system that generally avoids making measurements of light intensity. Instead, coded signals are compared with one another to determine error rates between emitted light and detected light (across a chamber). Based on the error rate, processing circuitry can determine particulate concentration.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: March 13, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Keiichi Kajino, Mitsuharu Iwasaki, Tatsuyuki Nihei
  • Patent number: 8130047
    Abstract: In many types of wireless applications (like wireless modems), it is important that the phase locked loops (PLLs) be able to synthesize clock frequencies in a wide tuning range. Because of the complexity of many conventional PLLs (which were deigned to cover wide tuning ranges), there was often a significant delay to achieve phase and frequency lock. Here, an open loop calibration system is provided to coarse tune a PLL very rapidly. Generally, this calibration system employs binary searches to coarsely adjust a voltage controlled oscillator (VCO) from a VCO bank to within a predetermined range around a target frequency.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: March 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Salvatore Finocchiaro, Francesco Dantoni
  • Patent number: 8129682
    Abstract: A radiation sensor includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) thermopile junctions connected in series to form a thermopile (7,8) within a dielectric stack (3). The first thermopile junction (7) is insulated from a substrate (2) of the chip. A resistive heater (6) in the dielectric stack for heating the first thermopile junction is coupled to a calibration circuit (67) for calibrating responsivity of the thermopile (7,8). The calibration circuit causes a current flow in the heater and multiplies the current by a resulting voltage across the heater to determine power dissipation. A resulting thermoelectric voltage (Vout) of the thermopile (7,8) is divided by the power to provide the responsivity of the sensor.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: March 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov
  • Patent number: 8130129
    Abstract: One embodiment of the present invention includes an analog-to-digital converter (ADC) system. The system includes an ADC configured to generate digital samples that are digital versions of at least one analog signal at a sampling frequency and a memory configured to store data corresponding to an average value of the digital samples in at least one register. The system further includes a processor configured to access the data corresponding to the average value for processing at an access frequency that is less than the sampling frequency.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: March 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Eric Gregory Oettinger, Mark David Heminger
  • Patent number: 8130481
    Abstract: Electrostatic discharge (ESD) protection circuits for self-protecting cascode stages are disclosed. In one example, an ESD protection circuit is described. A cascode stage is configured to selectively couple an output pad to a reference terminal. An ESD sensor may detect a change in voltage indicative of an ESD event occurring at the output pad, causing a gate drive to turn on the cascode stage to conduct ESD current in response to detection of the ESD event at the output pad. A leakage blocker is also included to prevent leakage current from the cascode stage to the gate drive while there is not an ESD event.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: March 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Jinyu Yang, Dening Wang, Gregory George Romas, Jr.
  • Patent number: 8125553
    Abstract: An imaging apparatus is provided. The apparatus generally comprises an array and storage elements. The array includes photosensitive cells that are arranged in a plurality of columns and a plurality of rows such that each column includes a set of photosensitive cell pairs that have a shared region with a share floating diffusion region and a shared selection transistor. Also, the location of each shared region of each column is shifted by one row in each adjacent column.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: February 28, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Kazuya Mori, Toshiyuki Ishiuchi