Patents Represented by Attorney, Agent or Law Firm Mark A. Valetti
  • Patent number: 5305266
    Abstract: The present invention is a circuit comprising: a plurality of memory cells (not shown); a plurality of first amplifiers (each first amplifier is preferably comprised of; a plurality of sense amplifiers (e.g. 20), a block amplifier (e.g. 22), and a second means, preferably a block-I/O pair (e.g. 24 and 26), to connect the plurality of sense amplifiers to the block amplifier), wherein each first amplifier is selectively connected, preferably by a bitline pair (not shown), to a portion of the plurality of memory cells; a second amplifier (e.g. 34 in FIG. 2) connected to the plurality of first amplifiers by a first means, preferably a local-I/O pair (e.g. 28 and 32); and a means of comparing data, preferably determining whether the data are comprised of the same data states on the first means, from the selectively connected portions of the plurality of memory cells with data from the remainder of the selectively connected portions of the plurality of memory cells.
    Type: Grant
    Filed: March 22, 1991
    Date of Patent: April 19, 1994
    Assignee: Texas Instruments Incorporated
    Inventor: Robert N. Rountree
  • Patent number: 5296393
    Abstract: An integrated process is shown for the fabrication of one or more of the following devices: (n-) and (p-) channel low-voltage field-effect logic transistors (139/140); (n-) and (p-) channel high-voltage insulated-gate field-effect transistors (141, 142) for the gating of an EEPROM memory array or the like; a Fowler-Nordheim tunneling EEPROM cell (143); (n-) and (p-) channel drain-extended insulated-gate field-effect transistors (144, 145); vertical and lateral annular DMOS transistors (146, 147); a Schottky diode (148); and a FAMOS EPROM cell (149). A "non-stack" double-level poly EEPROM cell (676) with enhanced reliability (676) is also disclosed.
    Type: Grant
    Filed: August 3, 1992
    Date of Patent: March 22, 1994
    Assignee: Texas Instruments Incorporated
    Inventors: Michael C. Smayling, Louis Hutter, Georges Falessi, James R. Todd, Manuel Torreno
  • Patent number: 5293216
    Abstract: A fiber-optic sensor device (210) for semiconductor device manufacturing process control measures polycrystalline film thickness as well as surface roughness and spectral emissivity of semiconductor wafer (124). The device (210) comprises a sensor arm (212) and an opto-electronic interface and measurement box (214), for directing coherent laser energy in the direction of semiconductor wafer (124). Opto-electronic interface/measurement unit (214) includes circuitry for measuring the amounts of laser power coherently reflected in the specular direction from the semiconductor wafer (124) surface, scatter reflected from the semiconductor wafer (124) surface, coherently transmitted in the specular direction through the semiconductor wafer (124), and scatter transmitted through the semiconductor wafer (124).
    Type: Grant
    Filed: December 31, 1990
    Date of Patent: March 8, 1994
    Assignee: Texas Instruments Incorporated
    Inventor: Mehrdad M. Moslehi
  • Patent number: 5275976
    Abstract: A process chamber purge module (56) is provided, including a stack module (60) and a process chamber liner (62). The stack module comprises a plurality of quartz plates (100, 110, and 116) having flow apertures to permit radial and axial flow of a purge gas to the backside of a semiconductor wafer (18). The process chamber liner (62) isolates the process chamber walls from the process chamber process environment by flowing between the liner and the walls a portion of the purge gas. Process chamber liner (62) comprises a quartz cylindrical collar that operates to decouple the process chamber (16) process environment (20) from the process chamber collar walls (42). The stack module (60) decouples the process chamber optical/vacuum quartz window (64) from the semiconductor wafer (18) during a heated semiconductor wafer fabrication process. By flowing purge gas to the backside of the semiconductor wafer (18), the present invention prevents reactive process gas interaction with the semiconductor wafer backside.
    Type: Grant
    Filed: December 27, 1990
    Date of Patent: January 4, 1994
    Assignee: Texas Instruments Incorporated
    Inventor: Mehrdad M. Moslehi
  • Patent number: 5272098
    Abstract: A field effect transistor (147) is formed in a region of a second semiconductor layer (171), having a first conductivity type. A tank region (196) of a second conductivity type opposite the first conductivity type is formed in the semiconductor region (171), and defines a tank area on the face of the semiconductor layer (171). A first highly doped region (276) formed to be of the first conductivity type is formed within the region (171) and to be spaced from the tank region (196). A gate insulator layer (218) is formed on at least one selected portion of the face, this selected portion including a portion of the tank area (196). A conductive gate (246) is formed on the gate insulator layer over the selected portion of the face. At least one second highly doped region (278) is formed at the face within the tank area to be of the first conductivity type, and to have at least one lateral edge self-aligned to a corresponding one of the lateral edges of the gate (246 ).
    Type: Grant
    Filed: September 28, 1992
    Date of Patent: December 21, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: Michael C. Smayling, James R. Todd, Louis Hutter
  • Patent number: 5270222
    Abstract: A sensor (210) for diagnosis and prognosis of semiconductor device fabrication processes measures specular, scattered, and total surface reflectances and transmittances of semiconductor wafers (124). The sensor (210) comprises a sensor arm (212) and an opto-electronic control box (214), for directing coherent electromagnetic or optical energy in the direction of semiconductor wafer (124). Opto-electronic control box (214) includes circuitry for measuring the amounts of laser powers coherently reflected from and transmitted through the semiconductor wafer (124) surface and the amounts of electromagnetic powers scatter reflected from and transmitted through the semiconductor wafer (124) surface. The present invention determines specular, scattered, and total reflectance and transmittance as well as surface roughness values for semiconductor wafer (124) based on measurements of coherent and scatter reflected and transmitted laser powers.
    Type: Grant
    Filed: December 31, 1990
    Date of Patent: December 14, 1993
    Assignee: Texas Instruments Incorporated
    Inventor: Mehrdad M. Moslehi
  • Patent number: 5243637
    Abstract: A clock stability circuit (10, 20, 30, 40) assures stable clock generator operation after oscillator start-up, such as during re-entry after a low-power Halt mode in a microprocessor or microcomputer. The clock stability circuit detects stable clock cycles that transition between a selected high amplitude threshold (near VDD) and a selected low amplitude threshold (near VSS), and provides a clock stable signal after a selected number of stable clock cycles, indicating that the oscillator has stabilized. The clock stability circuit includes four modules: input sampler (10), pulse generator (20), pulse counter (30) and control logic (40). The input sampler module includes CMOS NAND gates (11, 14) respectively fabricated with p/n-channel ratios to provide a CLOCK A signal that transitions at the selected high amplitude threshold of an oscillator cycle, and a CLOCK B signal that transitions at the selected low amplitude threshold.
    Type: Grant
    Filed: June 4, 1992
    Date of Patent: September 7, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: Edward H. Flaherty, David A. Van Lehn
  • Patent number: 5242841
    Abstract: An embodiment of the present invention is a method of fabricating power and non-power devices on a semiconductor substrate, the method comprising: forming alignment marks in the substrate (100); introducing a dopant of a first conductivity type into the substrate to form high-voltage tank regions (103); annealing the dopants (105); introducing dopants of the first conductivity type and a second conductivity type in a region in the high-voltage tank region (109); annealing the dopants of the first and the second conductivity type to form a second region within a third region, both within the high-voltage tank region, due to the different rates of diffusion of the dopants (110); and forming gate structures after the annealing of the dopants of the first and second conductivity types (122).
    Type: Grant
    Filed: March 25, 1992
    Date of Patent: September 7, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: Michael C. Smayling, Manuel L. Torreno, Jr. deceased, George Falessi