Abstract: Method of breaking the desalter emulsion in a crude oil desalting system in which oil based demulsifiers are added to the wash water stream and mixed prior to contacting the crude oil. The method is effective for crude oils which form reverse (oil-in-water) emulsions when mixed with the wash water at the process temperature.
Abstract: The present invention is directed to the use of phosphate esters or taurines to inhibit dryer section deposition in a pulp making or paper machine when the pulp furnish used contains tacky materials. The deposition control agent may be added to the pulp furnish or sprayed on the paper web. The phosphate ester may be a mono-, di- or triester.
Type:
Grant
Filed:
July 12, 1991
Date of Patent:
October 26, 1993
Assignee:
Betz PaperChem, Inc.
Inventors:
Jacqueline K. Pease, Dennis W. Barton, Glenn J. Henderson
Abstract: A foam carrier for a dust control agent and a pesticidal material is provided to control fugitive dust dissemination and biological activity in bulk/granular solids.
Type:
Grant
Filed:
February 25, 1993
Date of Patent:
October 26, 1993
Assignee:
Betz Laboratories, Inc.
Inventors:
Donald C. Roe, Dwight P. Davis, Kevin C. Manning, Edmund J. Bockowski, Marc Verschoren
Abstract: An improved oxygen scavenger for aqueous mediums is disclosed which is a hydroxyalkylhydroxylamine. The material may be catalyzed with a compound such as copper, hydroquinone, benzoquinone, 1,2-naphthoquinone-4-sulfonic acid, pyrogallol and t-butylcatechol. Hydroxyalkyl substituted hydroxyalmines of the general formula HO-N-[CH.sub.2 --CH(OH)--R].sub.2 wherein R is H or C.sub.1 to C.sub.10 alkyl have been found to be effective oxygen scavengers for aqueous systems such as industrial water system.
Abstract: A process of dewatering and agglomerating fine coal. The process consists of treating an aqueous fine coal slurry with a chemical binding agent prior to filtration or drying. The preferred chemical binding agent is an emulsifiable process oil. The process results in more efficient dewatering and low dustiness of the treated coal.
Abstract: Methods and compositions for controlling fugitive dust emissions from bulk granular or powdered solids are disclosed. Fugitive dust emissions are controlled by applying an aqueous, foamed solution including a water-soluble cationic polymer to dust producing bulk, granular or powdered solids. The cationic polymer is incorporated into an aqueous foam comprising anionic, amphoteric or cationic foaming agents.
Abstract: In a paint spray booth wherein water is used to collect oversprayed paint, a process for detackifying and coagulating the oversprayed paint by the addition of specific amounts of specific anions and cationic polymers blended prior to addition to the water system.
Type:
Grant
Filed:
June 9, 1992
Date of Patent:
October 5, 1993
Assignee:
Betz Laboratories, Inc.
Inventors:
Mitchell J. Kassouf, Daniel W. Yankovich, Jr., Deborah L. Purnell
Abstract: The treatment of an aqueous system to inhibit scale formation with a polyepoxysuccinic acid scale inhibitor, an acrylic acid copolymer and a lanthanide ion blending agent.
Abstract: A method of enhancing the removal of a benzene from a petroleum refinery desalter effluent brine is described. The method involves treating the effluent brine with a combination of aluminum chlorhydrate and a water soluble cationic polymer followed by solvent extraction. The preferred cationic polymer is polydiallyldimethylammonium chloride.
Abstract: A method for improving the yield of gold and silver from a Merrill-Crowe recovery process where the presence of copper effects yield. The method involves the addition of a substoichiometric amount of ethylenediaminetetraacetic acid in combination with a phosphonate and polyacrylic copolymer scale control agent. The method also reduces zinc consumption and controls scaling in the stripping circuit.
Type:
Grant
Filed:
January 3, 1992
Date of Patent:
June 1, 1993
Assignee:
Betz Laboratories, Inc.
Inventors:
Suzanne L. Kladder, Terrence W. Mattioli, Gary E. Geiger, James E. Cressman
Abstract: Agglomerating agent and method for use in heap leaching of mineral bearing ores. A moderate to high molecular weight anionic polymer preferably in combination with lime provides a highly effective agglomerating agent. The anionic polymer is preferably a copolymer of acrylamide and acrylic acid. The polymer preferably has a molecular weight of from about 1 to 8 million or higher.
Abstract: An improved non-viscous aqueous dust control solution which includes a polyvinyl alcohol and boric acid. The improved solution may be spray applied or applied as a foam. The solution may include cross-linking agents, extenders, plasticizers or surfactants.
Abstract: Agglomerating agent and method for use in heap leaching of mineral bearing ores. A moderate to high molecular weight anionic polymer in combination with lime provides a highly effective agglomerating agent. The anionic polymer is preferably a copolymer of acrylamide and acrylic acid. The polymer preferably has a molecular weight of from about 1 to 8 million or higher.
Abstract: A corrosion inhibitor formulation for oil and water systems which formulation is resistant to sludge formation and does not tend to stabilize oil/water emulsions when added to oil and water systems. The corrosion inhibitor includes an imidazoline dissolved in an aromatic solvent, a 2-hydroxyalkylcarboxylic acid such as glycolic acid and a glycol such as hexylene glycol. The imidazoline is preferably prepared from a long chain fatty acid and a polyamine in a molar ratio of about 1.5:1.
Abstract: The present invention is directed to a method of detoxifying water containing a cationic surfactant based biocide. The method comprises adding to an aqueous stream including a biocide containing cationic surfactants a sufficient quantity of a combination including clay and a non surface active sulfonate such as a polymerized alkyl naphthalene sulfonate. The combination allows for a high solids detoxification treatment.
Type:
Grant
Filed:
April 28, 1992
Date of Patent:
December 8, 1992
Assignee:
Betz Laboratories, Inc.
Inventors:
Stephen R. Vasconcellos, Larry A. Lyons, Michael F. Mohn
Abstract: A method and composition for detackifying or coagulating and flocculating waterborne and solventborne paints with organofunctional silane compounds.
Abstract: This invention relates to an improved press felt conditioning treatment which controls the deposition of polymerically flocculated particulate substances in a press felt. The treatment comprises applying to the felt an effective inhibiting amount of a conditioner comprising a combination of a polymethylnaphthalene sulfonate and a type A phosphate ester comprising a nonyl phenol hydrophobe based phosphate ester having between 6 and 10 moles of ethylene oxide and a mono to diester ratio of approximately 60 to 40 or a type B phosphate ester comprising a tridecyl alcohol hydrophobe based phosphate ester having between 6 and 10 moles of ethylene oxide and a mono to diester ratio of about 60 to 40. The use of this combination was found to be especially effective at preventing the deposition of polymerically flocculated particulate substances in a press felt and paper machine.
Abstract: Methods of forming a dried in place conversion coating on metal surfaces such as aluminum and aluminum alloys. The methods comprise contacting the metal with an aqueous solution of a water soluble maleic or acrylic acid/allyl ether copolymer alone or with an acid.
Abstract: A method of treating water to inhibit the formation of scale is disclosed. The method is particularly effective at inhibiting the formation and deposition of calcium and barium scales in aqueous systems such as cooling water systems. The method comprises introducing into the aqueous system a polyepoxysuccinic acid of the general formula ##STR1## when n ranges from about 2 to about 11, M is hydrogen or a water soluble cation such as Na.sup.+, NH.sub.4.sup.+, or K.sup.+ and R is hydrogen, C.sub.1-4 alkyl or C.sub.1-4 substituted alkyl.
Type:
Grant
Filed:
July 30, 1991
Date of Patent:
September 15, 1992
Assignee:
Betz Laboratories, Inc.
Inventors:
J. Michael Brown, John F. McDowell, Kin-Tai Chang