Patents Represented by Attorney, Agent or Law Firm Warren L. Franz
  • Patent number: 8208759
    Abstract: An image system comprises a light valve and an image capturing unit. The light valve comprises an array of individually addressable pixels capable of generating an image. The image capturing unit comprises a detector having an array of detector pixels capable of capturing images. The detector pixels are correlated with the light valve pixels.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: June 26, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Roger S. Carver, Leigh Ann Files, Duane Scott Dewald, Walter M. Duncan
  • Patent number: 8203776
    Abstract: A method of forming an electronic device includes providing a patterned lower metal layer over a substrate and a first sacrificial layer there between. A second sacrificial layer is formed over the metal layer, and a portion thereof is removed. A third sacrificial layer is formed over the second sacrificial layer, and an upper metal layer is formed over the third sacrificial layer. A portion of the upper metal layer is removed, and the first, second and third sacrificial layers are removed.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: June 19, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Rosemary Urmese Anthraper, Lucius M. Sherwin, Irma Izzeth Annillo
  • Patent number: 8203197
    Abstract: Thermal communication of matched transistors formed in lower electrical resistance subregions of first and second active substrate regions is provided by thermally conductive members formed to extend over isolation regions between higher electrical resistance subregions of the first and second regions. In one form, thermal communication is done, with or without contacts, through insulating layers to metal layers formed over the substrate. In another form, thermal communication is done through a polysilicon layer formed over the substrate.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: June 19, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Leland Scott Swanson, Gregory E. Howard
  • Patent number: 8203786
    Abstract: Methods and apparatus for a display system include a frame and one or more screen panels. Each panel has an inwardly disposed face and an outwardly disposed face. An adhesive layer couples to respective portions of each inwardly disposed face. At least one of the adhesive layers couples the one or more screen panels to the frame.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: June 19, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Matthew G. Hine
  • Patent number: 8171804
    Abstract: A motion conversion system is described. The motion conversion system comprises a first torsional member operative for rotating in a first direction. A second torsional member is offset a distance from the first torsional member, wherein the second torsional member is operative for rotating in a direction opposite from the first direction. And, a lateral member has a lower surface connected to the first and second torsional members. Wherein, translational movement of the lateral member results from rotational movement of the first and second torsional members.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: May 8, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Richard Lee Knipe
  • Patent number: 8173510
    Abstract: An integrated circuit (200) includes one of more transistors (210) on or in a substrate (10) having semiconductor surface layer, the surface layer having a top surface. At least one of the transistors are drain extended metal-oxide-semiconductor (DEMOS) transistor (210). The DEMOS transistor includes a drift region (14) in the surface layer having a first dopant type, a field dielectric (23) in or on a portion of the surface layer, and a body region of a second dopant type (16) within the drift region (14). The body region (16) has a body wall extending from the top surface of the surface layer downwards along at least a portion of a dielectric wall of an adjacent field dielectric region. A gate dielectric (21) is on at least a portion of the body wall. An electrically conductive gate electrode (22) is on the gate dielectric (21) on the body wall.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: May 8, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Taylor Rice Efland
  • Patent number: 8176241
    Abstract: In accordance with the teachings of the present invention, a system and method for optimizing DRAM refreshes in a multi-channel memory controller are provided. In a particular embodiment, the method includes receiving, at a router in a light modulation system, a signal from one of a plurality of channels operable to read or write to a plurality of DRAM banks, the signal indicating that the channel does not need to access the plurality of DRAM banks during predetermined time period. The method also includes indicating the receipt of the signal to a refresh channel including a plurality of counters, wherein each counter is operable to track refreshes of a respective one of the plurality of DRAM banks. The method further includes receiving, from the refresh channel, an indication of one of the plurality of DRAM banks to refresh in response to the receipt of the signal, and refreshing the indicated DRAM bank.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: May 8, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Alan S. Hearn
  • Patent number: 8174545
    Abstract: A system and method for reducing pulse width modulation contouring artifacts. Each input intensity value is translated to at least one non-binary bit pattern for display. Many of the input intensity values are translated to at least two alternate non-binary bit patterns. The alternate codes are used to smooth the transition between intensity codes as major bits are turned on. The smoothing occurs by the gradual transition from codes that do not use the major bit to codes that do use the major bit. Typically the alternate codes are selected based on the location of the pixel in a spatial pattern (100) and the alternate codes are spatially alternated from one pixel (102) to the next (104). Other embodiments temporally alternate the codes from one period—typically a frame period—to the next. Still other embodiments alternate the codes both spatially and temporally.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: May 8, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Daniel J. Morgan
  • Patent number: 8157388
    Abstract: A system and method for using an optical lightguide in a projection display system. A plurality of light sources provides a plurality of colored light to a lightguide. The lightguide may include alternating layers of a relatively high refractive index material and a relatively low refractive index material. In an embodiment, the layers of the lightguide are tapered. In another embodiment, the lightguide includes a light pipe having a lenticular array on the entrance face of the light pipe. Optionally, the light pipe may be tapered. The lightguide provides a line of light to a scanning element, which in turn redirects the light to a spatial light modulator.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: April 17, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Terry Alan Bartlett, Patrick Rene Destain
  • Patent number: 8144321
    Abstract: According to one embodiment of the present invention, a system for encoding an optical spectrum includes a dispersive element, a digital micromirror device (DMD) array, a detector, and a controller. The dispersive element receives light from a source and disperses the light to yield light components of different wavelengths. The digital micromirror device (DMD) array has micromirrors that modulate the light to encode an optical spectrum of the light. The detector detects the light that has been modulated. The controller generates an intensity versus time waveform representing the optical spectrum of the detected light.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: March 27, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Walter M. Duncan, James N. Malina, Rajeev Ramanath
  • Patent number: 8139284
    Abstract: A digital micromirror device (DMD), a method of manufacturing the DMD and an optical processor incorporating a DMD. In one embodiment, the DMD includes: (1) a first group of micromirrors having a first modulation structure based on a first wavelength of light and a second group of micromirrors having a second modulation structure based on a second wavelength of light, the second wavelength differing from the first wavelength.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: March 20, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Kun C. Pan
  • Patent number: 8139871
    Abstract: An image compression and decompression method compresses data based upon the data states, and decompresses the compressed data based upon the codes generated during the compression.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: March 20, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Donald B. Doherty, Alan S. Hearn
  • Patent number: 8138035
    Abstract: A method of forming an integrated circuit device that includes a plurality of multiple gate FinFETs (MuGFETs) is disclosed. Fins of different crystal orientations for PMOS and NMOS MuGFETs are formed through amorphization and crystal regrowth on a direct silicon bonded (DSB) hybrid orientation technology (HOT) substrate. PMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (110) crystal orientations. NMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (100) crystal orientations in a Manhattan layout with the sidewall channels of the different PMOS and NMOS MuGFETs aligned at 0° or 90° rotations.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: March 20, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Weize Xiong, Cloves Rinn Cleavelin, Angelo Pinto, Rick L. Wise
  • Patent number: 8139078
    Abstract: In accordance with one embodiment, a method for emulating the color performance of a display system includes determining an expected first color gamut of the display system. Display data is converted into a format that emulates the first color gamut. The converted display data is displayed by a different display system having an expected second color gamut different than the expected first color gamut.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: March 20, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Erin Patricia Murphy Smoyer, Gregory S. Pettitt, Jason Ryan Thompson
  • Patent number: 8138521
    Abstract: The objective of this invention is to provide a semiconductor device having a thyristor that can shorten the turn-off time. A first electroconductive type first semiconductor region 20 is formed on a substrate, and a second electroconductive type second semiconductor region 22, a second electroconductive type third semiconductor region 23, designated as an anode, and a first electroconductive type fourth semiconductor region 24, designated as an anode gate, are formed on the surface layer part of the first semiconductor region. Also, a first electroconductive type fifth semiconductor region 26, designated as a cathode, and a second electroconductive type sixth semiconductor region 25, designated as a cathode gate, are formed on the surface layer part of the second semiconductor region.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: March 20, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Hideaki Kawahara
  • Patent number: 8138045
    Abstract: A method of forming sidewall spacers for a gate in a semiconductor device includes depositing a gate oxide layer over a gate and source/drain regions, and using a thermal anneal to oxidize silicon of the substrate and silicon of the gate after formation of the deposited oxide layer. A sidewall layer is deposited over the oxide layer following the oxidation, and the sidewall layer and oxide layer are patterned to form the sidewall spacers.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: March 20, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Mahalingam Nandakumar, Said Ghneim, Frank Scott Johnson
  • Patent number: 8125558
    Abstract: An integrated system comprises a light valve and an image sensor for image display and image capture. The image sensor and the light valve share a common dual-function lens by positioning the light valve and image sensor at locations offset from the optical axis of the dual-function lens.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: February 28, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Michael T. Davis
  • Patent number: 8124321
    Abstract: In a lithography process using an ultraviolet process, the applied ultraviolet resist can be removed by intentionally condensing the ultraviolet resist before removing the ultraviolet resist.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: February 28, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Ronald Charles Roth, Georgina Marie Park, Rosemary Urmese Anthraper
  • Patent number: 8124529
    Abstract: The invention provides a method for manufacturing a semiconductor device that comprises placing a metallic gate layer over a gate dielectric layer where the metallic gate layer has a crystallographic orientation, and re-orienting the crystallographic orientation of the metallic gate layer by subjecting the metallic gate layer to a hydrogen anneal.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: February 28, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Luigi Colombo, James J. Chambers, Mark R. Visokay
  • Patent number: 8125579
    Abstract: Provided is a light emitting diode (LED). The LED, in one embodiment, includes a reflective layer located over a substrate and a quarter wave plate emitter layer located over the reflective layer. The quarter wave plate emitter layer, in this embodiment, is substantially crystalline in nature, and further wherein an extra-ordinary axis of the quarter wave plate emitter layer is located in a plane thereof. The LED, in this embodiment, further includes a transmissive/reflective polarization layer located over the quarter wave plate emitter layer, wherein a transmission direction of the transmissive/reflective polarization layer is oriented at about 45 degrees with respect to the extra-ordinary axis.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: February 28, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Sajjad A. Khan, Steven M. Penn