Patents Represented by Attorney, Agent or Law Firm William E. Koch
  • Patent number: 6891319
    Abstract: A field emission device and method of forming a field emission device are provided in accordance with the present invention. The field emission device is comprised of a substrate (12) having a deformation temperature that is less than about six hundred and fifty degrees Celsius and a nano-supported catalyst (22) formed on the substrate (12) that has active catalytic particles that are less than about five hundred nanometers. The field emission device is also comprised of a nanotube (24) that is catalytically formed in situ on the nano-supported catalyst (22), which has a diameter that is less than about twenty nanometers.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: May 10, 2005
    Assignee: Motorola, Inc.
    Inventors: Kenneth Andrew Dean, Bernard F. Coll, Albert Alec Talin, Paul A. Von Allmen, Yi Wei, Adam Madison Rawlett, Matthew Stainer
  • Patent number: 6890230
    Abstract: A field emission source comprising a first conductive region, a layer of nanotubes deposited on the first conductive region, and a second conductive region placed over and spaced from the nanotube coated first conductive region. After the device structure is fabricated, a laser beam is used to dislodge one end of the nanotube from the first conductive surface and an electric field is simultaneously applied to point the freed end of the nanotube at the second conductive region.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: May 10, 2005
    Assignee: Motorola, Inc.
    Inventors: Johann Trujillo, Albert Alec Talin, Kenneth Andrew Dean, Curtis D. Moyer
  • Patent number: 6829158
    Abstract: A magnetoresistive multi-level generator including a first series circuit with a first magnetoresistive element having a resistance equal to Rmax connected in series with n first magnetoresistive elements each having a resistance equal to Rmin. Where n is equal to a whole integer greater than one, n additional series circuits, each including an additional magnetoresistive element with a resistance equal to Rmax connected in series with n magnetoresistive elements each with a resistance equal to Rmin. The first and n additional series circuits being connected in series between the input and output terminals and in parallel with each other. Whereby a total resistance between the input and output terminals is a level Rmin+&Dgr;R/n, where &Dgr;R is equal to Rmax−Rmin.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: December 7, 2004
    Assignee: Motorola, Inc.
    Inventor: Peter K. Naji
  • Patent number: 6819054
    Abstract: An electronic circuit apparatus (5) for a field emission device (14) comprises a charge emission device electrically connected to a charge ballast electronic circuit (13,15). The charge ballast electronic circuit includes a capacitance device (25,26) electrically connected in series with a transistor (10,12) and electrically connected in parallel with a resistor (28,23) where the capacitance is chosen to adjust a charge emitted by the field emission device.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: November 16, 2004
    Assignee: Motorola, Inc.
    Inventors: Scott V. Johnson, Bernard F. Coll, Kevin O'Connor
  • Patent number: 6798441
    Abstract: A teleconference system including a plurality of personal presence cells positioned at a local communication site and at a remote communication site. The plurality of personal presence cells are characterized as either sensor cells or display cells. The sensor cells include at least one video camera positioned to sense and transmit an image of the local participant, and an image screen positioned to reflect an image of the local participant toward the at least one video camera and for viewing of an image through the screen. The display cells each include at least one projection display positioned to display a multi-dimensional image of a remote participant on a display screen. A transmission link interfaces the plurality of personal presence cells positioned at the local communication site and the plurality of presence cells positioned at the remote communication site.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: September 28, 2004
    Assignee: Motorola, Inc.
    Inventors: Davis H. Hartman, Fred Vincent Richard, Diana Chen, Karen E. Jachimowicz, Barbara McNeill Foley, William Peterson, Earnest J. Johnson
  • Patent number: 6793462
    Abstract: A fluidic pump (108) comprises an electrolyte cavity (110) and a pump outlet (115) fluidically coupled to the electrolyte cavity that are within at least a portion of a fluid guiding structure (105), two electrodes (112, 113) extending from the fluid guiding structure into the electrolyte cavity; and a vapor permeable membrane (120) that prevents an electrolyte (125) in the electrolyte cavity from passing through the pump outlet while allowing gas to flow through the pump outlet.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: September 21, 2004
    Assignee: Motorola, Inc.
    Inventors: Thomas J. Smekal, Piotr Grodzinski, David B. Rhine
  • Patent number: 6787339
    Abstract: The present invention provides low cost microfluidic devices having embedded metal conductors. The devices of the invention comprise a electronic component comprising a substrate having a first surface, a layer of electrically-conductive material deposited on a portion of the first substrate surface, a first sublayer of electrically-insulating material deposited on the first substrate surface and on the layer of electrically-conductive material, a second sublayer of electrically-insulating material deposited on the first sublayer of insulating material, and a third sublayer of electrically-insulating material deposited on the layer of dielectric material, and a fluid-handling component having a contoured surface affixed to the electronic component. The devices of the invention are advantageously used for performing electric field lysis and the polymerase chain reaction. The invention further advantageously provides simple, low cost methods for fabricating such microfluidic devices.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: September 7, 2004
    Assignee: Motorola, Inc.
    Inventors: David B. Rhine, Thomas J. Smekal
  • Patent number: 6781319
    Abstract: A field emissive display (40) having an anode plate (10) coupled to a cathode plate (20) and a method for manufacturing the field emissive display (40). A substrate (21) of the cathode plate (20) is manufactured or selected such that its coefficient of thermal expansion substantially matches that of the anode plate (10), i.e., the coefficients of thermal expansion of the cathode plate (20) and the anode plate (10) are within ten percent of each other. The cathode plate (20) is coupled to the anode plate (10) by means of a frit structure (41) whose coefficient of thermal expansion preferably substantially matches that of the cathode plate (20) and the anode plate (10). A control circuit can be mounted to the bottom surface of the field emissive display (40).
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: August 24, 2004
    Assignee: Motorola, Inc.
    Inventors: Joyce K. Yamamoto, Emmett M. Howard, Lawrence N. Dworsky
  • Patent number: 6777727
    Abstract: An exemplary system and method for providing an acoustic plate wave apparatus is disclosed as comprising inter alia: a monocrystalline silicon substrate (200); an amorphous oxide material (220); a monocrystalline perovskite oxide material (230); a monocrystalline piezoelectric material (240); and a flexural plate wave component (250, 270) having an input interdigitated transducer (270), an output interdigitated transducer (250) and an optional support layer (260). Deposition or removal of material on or from an absorptive thin film sensor surface (210), or changes in the mechanical properties of the thin film (210) in contact with various chemical species, or changes in the electrical characteristics of a solvent solution exposed to the thin film (210) generally operate to produce measurable perturbations in the vector quantities (e.g., velocity, etc.) and scalar quantities (e.g., attenuation, etc.) of the acoustic plate modes.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: August 17, 2004
    Assignee: Motorola, Inc.
    Inventors: Gregory J. Dunn, Allyson Beuhler, David Penunuri
  • Patent number: 6764874
    Abstract: A method of fabricating a nanotube structure which includes providing a substrate, depositing a supporting layer and an active catalyst film layer onto the substrate, and forming at least one nanotube on the surface of the substrate using a reaction chamber having a growth temperature of less than 850° C.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: July 20, 2004
    Assignee: Motorola, Inc.
    Inventors: Ruth Yu-Ai Zhang, Islamshah Amlani, Jeffrey H. Baker
  • Patent number: 6756223
    Abstract: An electro-chemical analysis device and method for analyzing biomolecular samples, including a means for holding a sample on a substrate platform, a thermal sensor, a biosensor formed having a specific spatial resolution as related to the thermal sensor, and a means for providing radiation to the biomolecular sample. The means for holding the sample, the thermal sensor, the biosensor, and the means for providing radiation all three-dimensionally integrated with the substrate platform, thereby defining a compact biomolecular analysis device having a volume resolution of less than 50 micro liters. During operation, radiation is provided to the biomolecular sample to provide for a constant temperature at which hybridization of the biomolecules takes place. The temperature of the biomolecular sample is monitored and controlled by the integrated thermal sensor and the integrated heater. Once hybridization takes place, the change in electric condition (e.g.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: June 29, 2004
    Assignee: Motorola, Inc.
    Inventors: Peter C. Roberts, Frederic Zenhausern, Jeremy W. Burdon, Daniel J. Sadler
  • Patent number: 6749407
    Abstract: An exemplary method for making a micropump device is disclosed as providing inter alia a substrate (300), an inlet opening (310), and outlet opening (340), a pump chamber (370) and flapper valves (350, 360). The fluid inlet channel (310) is generally configured to flow a fluid through/around the inlet opening flapper valve (350). The outlet opening flapper valve (360) generally provides means for preventing or otherwise decreasing the incidence of outlet fluid re-entering either the pumping cavity (370) and/or the fluid inlet channel (310). Accordingly, the reduction of backflow generally tends to enhance overall pumping efficiency. Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to improve micropump operation in any microfluidic application.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: June 15, 2004
    Assignee: Motorola, Inc.
    Inventors: Chenggang Xie, Joseph W. Bostaph, Xunhu Dai
  • Patent number: 6737202
    Abstract: An improved and novel method of forming a tiered structure, such as a T-gate structure, including the fabrication of a stabilized resist layer that provides for the prevention of interlayer intermixing with the deposition of subsequent resist layers. The method includes patterning a base resist layer to provide for an opening which will form the stem of the tiered structure and subsequently stabilizing the resist base layer without deforming the stem opening. Next, a resist stack is deposited on an uppermost surface of the stabilized resist layer. Patterning the resist stack provides for an opening on an uppermost layer or portion, and a reentrant profile in a portion of the resist stack adjacent the stabilized resist layer. Metallization and subsequent removal of the resist layers results in a tiered structure, such as a T-gate structure, formed using only low to medium molecular weight, linear polymeric materials such as those used in positive optical resists in optical lithography.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: May 18, 2004
    Assignee: Motorola, Inc.
    Inventors: Kathleen Ann Gehoski, Laura Popovich, David P. Mancini, Doug J. Resnick
  • Patent number: 6732567
    Abstract: A micro-gas chromatograph column is formed by texturing a channel into a plurality of green-sheet layers, which are then sintered together to form a substantially monolithic structure. A thick-film paste may be added to the channel textured in the green-sheet layers to provide a porous plug sintered in the micro-gas chromatograph column in the substantially monolithic. A thermal conductivity detector is formed in the substantially monolithic structure by depositing a conductive thick-film paste on the surface of one of the green-sheet layers to define a resistor in an exit channel of the micro-gas chromatograph column.
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: May 11, 2004
    Assignee: Motorola, Inc.
    Inventors: Cynthia G. Briscoe, Huinan Yu, Piotr Grodzinski, Rong-Fong Huang, Jeremy W. Burdon
  • Patent number: 6730623
    Abstract: An exemplary composition of matter and method for making high-efficiency, low-loss capacitors is disclosed as including inter alia a B2O3—Bi2O3—ZnO glass in admixture with material typically comprising about 30-40 wt % cubic phase (Bi0.5Zn0.5)(Zn0.5Nb1.5)O7 and about 60-70 wt % pseudo-orthorhombic phase Bi2(Zn1/3Nb1/3)2O7 (e.g., “BZN”). The mixture effectively reduces the sintering temperature of BZN from the range of about 950-1050° C. to the range of about 850-900° C., thereby rendering BZN suitable for cofiring with, for example, existing LTCC dielectrics. Disclosed features and specifications may be variously controlled, configured, adapted or otherwise optionally modified to further improve or otherwise optimize the sintering temperature of BZN and/or BZN-based materials.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: May 4, 2004
    Assignee: Motorola, Inc.
    Inventor: Xunhu Dai
  • Patent number: 6727016
    Abstract: A fuel cell device and method of forming the fuel cell device including a base portion having a major surface. At least one fuel cell membrane electrode assembly is formed on the major surface of the base portion. A water recovery and recirculation system is defined in a cap portion and in communication with a water recovery and recirculation channel defined in the base portion. The water recovery and recirculating system is formed to collect reaction water from the cathode side of the at least one fuel cell membrane electrode assembly for recirculation to the anode side of the fuel cell membrane electrode assembly. An exhaust separation chamber is defined in the base portion and communicating with the fuel cell membrane electrode assembly for the exhausting of generated gases.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: April 27, 2004
    Assignee: Motorola, Inc.
    Inventors: Joseph W. Bostaph, Daniel S. Marshall
  • Patent number: 6720569
    Abstract: An electro-optical device including a cathode plate, a plurality of emitters and an anode plate. The anode plate including a photoconductive layer formed on an interior surface and in alignment to receive emitter emissions. The device is characterized as matrix addressed according to an input signal. A varying video signal, in concert with the matrix scanning of the cathode, generates a video signal containing a scene imaged by the photoconductive layer of the anode plate.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: April 13, 2004
    Assignee: Motorola, Inc.
    Inventors: Scott V. Johnson, James E. Jaskie
  • Patent number: 6720597
    Abstract: A cladded conductive interconnect for programming a magnetoresistive memory device which includes a conductive material with a length, a first barrier conductive material positioned on the conductive material, and a multi-layer cladding region positioned along the length of the conductive material wherein the multi-layer cladding region includes N ferromagnetic layers, where N is a whole number greater than or equal to two, and wherein the multi-layer cladding region further includes at least one spacer layer, wherein the spacer layer can include a metal, an insulator, or an exchange interaction material, and wherein the spacer layer is sandwiched therebetween each adjacent ferromagnetic layer.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: April 13, 2004
    Assignee: Motorola, Inc.
    Inventors: Jason Allen Janesky, Nicholas D. Rizzo, Bradley N. Engel
  • Patent number: 6716078
    Abstract: A field emission display (30) having an anode plate (10) that has phosphor channels (13, 14, 15). The phosphor channels (13, 14, 15) are formed by depositing a first layer of photosensitive film (58) on a substrate (11). Stripes are patterned into the first layer photosensitive film (58) using ultraviolet light. A second layer of photosensitive film (59) is formed on the first layer of photosensitive film (58). Stripes are patterned into the second layer of photosensitive film (59) using ultraviolet light. The stripes in the second layer of photosensitive film (58) are substantially perpendicular to the first layer of photosensitive film (59). Both layers of photosensitive film are developed to form channel structures. Phosphor is formed in the channel structures to form the phosphor channels (13, 14, 15). The anode plate (10) is coupled to a cathode plate (31) to form the field emission display (30).
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: April 6, 2004
    Assignee: Motorola Inc.
    Inventors: Matthew Stainer, Shawn M. O'Rourke, Kazuo Kato, Susumu Sakamoto
  • Patent number: 6714095
    Abstract: A constant “R” network distributed amplifier formed in a multi-layer, low temperature co fired ceramic structure comprises multiple cascaded constant “R” networks for amplifying a signal applied thereto. Each one of the multiple cascaded constant “R” networks is formed in the ceramic structure and includes a plurality of ceramic layers each of which have a top and bottom planar surfaces which, when bonded together form the ceramic structure. A transmission line is formed on the top surfaces of each of the ceramic layers having a beginning end and a distal end and has a generally rectangular shape. The distal end of the transmission line formed on a lower ceramic layer is connected to the beginning end of the transmission line formed on the next adjacent upper ceramic layer by way of vias formed in the ceramic layers through which metal conductive material is formed there through.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: March 30, 2004
    Assignee: Motorola, Inc.
    Inventors: Anthony M. Pavio, Lei Zhao