Patents Represented by Attorney, Agent or Law Firm William E. Koch
  • Patent number: 6714446
    Abstract: A magnetoelectronics information device is provided that includes two multi-layer structures and a spacer layer interposed between the two multi-layer structures. Each of the multi-layer structures has two magnetic sublayers and a spacer layer interposed between the two magnetic sublayers. The spacer layer interposed between the two magnetic sublayers provides an antiferromagnetic exchange coupling that is quantified by a saturation field. The spacer layer interposed between the two multi-layer structures provides a second antiferromagnetic exchange coupling is quantified by another saturation field that is less than the first saturation field.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: March 30, 2004
    Assignee: Motorola, Inc.
    Inventor: Bradley N. Engel
  • Patent number: 6703784
    Abstract: A microcavity plasma discharge device comprising a micro-cavity device structure which includes N dielectric material structures wherein N is a whole number greater than or equal to one, each N dielectric material structure including a dielectric spacer region with a first opening wherein the dielectric spacer region is sandwiched therebetween a first dielectric material region with a second opening and a second dielectric material region with a third opening wherein the second opening and the third opening are positioned adjacent to the first opening to form a trench with a width and wherein a first conductive material layer is sandwiched between the dielectric spacer region and the first dielectric material region and a second conductive material layer is sandwiched between the dielectric spacer region and the second dielectric material region.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: March 9, 2004
    Assignee: Motorola, Inc.
    Inventor: Paul A. Vonallmen
  • Patent number: 6703258
    Abstract: An enhanced conductive probe that facilitates the gathering of data and a method of fabricating the probe. The probe includes an amplifier fabricated to define the probe tip. More particularly, the probe structure is defined by an amplifier formed as one of a metal oxide semiconductor (MOS) transistor, a bipolar amplifier, or a metal semiconductor field effect transistor (MESFET), thereby providing for the amplification of the input signal and improved signal to noise ratio during operation of the probe tip.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: March 9, 2004
    Assignee: Motorola, Inc.
    Inventors: Theresa J. Hopson, Kumar Shiralalgi, Ronald N. Legge
  • Patent number: 6696195
    Abstract: A fuel cell device and method of forming the fuel cell device including a base portion, formed of a singular body, and having a major surface. At least one fuel cell membrane electrode assembly is formed on the major surface of the base portion and includes an electrically conductive hydrophilic material for the wicking of reaction water and providing for electrical conduction to a current collector. A fluid supply channel including a mixing chamber is defined in the base portion and communicating with the fuel cell membrane electrode assembly for supplying a fuel-bearing fluid to the membrane electrode assembly. An exhaust channel including a water recovery and recirculation channel is defined in the base portion and communicating with the membrane electrode assembly and the electrically conductive hydrophilic material. The membrane electrode assembly and the cooperating fluid supply channel and cooperating exhaust channel forming a single fuel cell assembly.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: February 24, 2004
    Assignee: Motorola, Inc.
    Inventors: Jeanne S. Pavio, Joseph W. Bostaph, Allison M. Fisher
  • Patent number: 6696189
    Abstract: A fuel cell system and method of forming the fuel cell system including a base portion, formed of a singular body, and having a major surface. At least one fuel cell membrane electrode assembly is formed on the major surface of the base portion. A fluid supply channel including a mixing chamber is defined in the base portion and communicating with the fuel cell membrane electrode assembly for supplying a fuel-bearing fluid to the membrane electrode assembly. A methanol concentration sensor is positioned to communicate with the fuel cell membrane electrode assembly and the fuel-supply channel for regulating the mixture of fuel to the electrode assembly. An exhaust channel including a water recovery and recirculation system is defined in the base portion and communicating with the membrane electrode assembly.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: February 24, 2004
    Assignee: Motorola, Inc.
    Inventors: Joseph W. Bostaph, Chowdary R. Koripella, Allison M. Fisher
  • Patent number: 6689674
    Abstract: A method of fabricating a nanotube structure which includes providing a substrate, providing a mask region positioned on the substrate, patterning and etching through the mask region to form at least one trench, depositing a conductive material layer within the at least one trench, depositing a solvent based nanoparticle catalyst onto the conductive material layer within the at least one trench, removing the mask region and subsequent layers grown thereon using a lift-off process, and forming at least one nanotube electrically connected to the conductive material layer using chemical vapor deposition with a methane precursor.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: February 10, 2004
    Assignee: Motorola, Inc.
    Inventors: Ruth Yu-ai Zhang, Raymond K. Tsui, John Tresek, Jr., Adam M. Rawlett
  • Patent number: 6677515
    Abstract: A thermoelectric material is disclosed that is manufactured from a method including the steps of: providing a Group IV element boride, and doping the Group IV element boride with a doping element chosen from one of the column III, IV, V elements, wherein the doping element is different from the Group IV element in the Group IV element boride, and the doping element is not boron. An alternate method of fabricating a thermoelectric material includes the steps of simultaneously growing on a substrate a Group IV element boride and at least one doping element chosen from one of the Group III, IV, or V elements wherein the doping element is different than the Group IV element in the Group IV element boride and the doping element is not boron.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: January 13, 2004
    Assignee: Motorola, Inc.
    Inventors: Jun Wang, Daniel S. Marshall
  • Patent number: 6672925
    Abstract: A vacuum microelectronic device (10,40) emits electrons (37) from surfaces of nanotube emitters (17, 18). Extracting electrons from the surface of each nanotube emitter (17) results is a small voltage variation between each emitter utilized in the device (10, 40). Consequently, the vacuum microelectronic device (10,40) has a more controllable turn-on voltage and a consistent current density from each nanotube emitter (17,18).
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: January 6, 2004
    Assignee: Motorola, Inc.
    Inventors: Albert Alec Talin, James E. Jaskie, Bernard F. Coll
  • Patent number: 6670403
    Abstract: A polymer electrolyte membrane comprised of a hydrophobic hydrocarbon region, a hydrophilic region containing covalently bound acid functional groups and protic functional groups. The hydrophobic hydrocarbon region and the hydrophilic region are covalently bound to form a single polymer molecule.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: December 30, 2003
    Assignee: Motorola, Inc.
    Inventor: Allison M. Fisher
  • Patent number: 6664606
    Abstract: A method of utilizing passive circuit components in an integrated circuit comprising the steps of providing a plurality of integrated capacitive elements and a plurality of integrated inductive elements interconnected to form an electrical circuit wherein each inductive element has a width and creates a circumferential magnetic field. Each integrated inductive element is oriented such that the circumferential magnetic field is parallel to the plane of each adjacent integrated capacitive element and parallel to the width of the integrated inductive element so that the resistance of the electrical circuit is decreased and the quality factor is increased.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: December 16, 2003
    Assignee: Motorola, Inc.
    Inventor: John C. Estes
  • Patent number: 6664935
    Abstract: A broadband impedance matching integrated circuit apparatus comprising an alternating current ground plane, a direct current ground plane positioned proximate to the alternating current ground plane, a first conductive transmission line positioned a distance from the alternating current and direct current ground planes, a dielectric material layer with a thickness positioned on the first conductive transmission line, a second conductive transmission line positioned on the dielectric material layer wherein the first and second conductive transmission lines are electrically interconnected to behave as an electromagnetically coupled tapped autotransformer.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: December 16, 2003
    Assignee: Motorola, Inc.
    Inventors: William John Thompson, Anthony M. Pavio, Lei Zhao, John C. Estes
  • Patent number: 6660324
    Abstract: A method for fabricating viewing screen (100) includes the steps of: adding to a black surround paste a ductile metal paste, adding to the black surround paste lead titanate particles, depositing the black surround paste on glass substrate (110), and heating the black surround paste and glass substrate (110) to affix the black surround paste to glass substrate (110), thereby forming black matrix (111). The ductile metal paste and lead titanate particles are added in amounts sufficient to realize an extent of cracking in black matrix (111) upon repeated heating to a temperature within a range of 450-600° C. that is significantly less than that exhibited by an unimproved black matrix, which is made only from the material of the black surround paste.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: December 9, 2003
    Assignee: Motorola, Inc.
    Inventors: Shawn M. O'Rourke, Nick R. Munizza, Matthew Stainer
  • Patent number: 6660423
    Abstract: A fuel cell device and method of forming the fuel cell device including a base portion, formed of a singular body, and having a major surface. At least one fuel cell membrane electrode assembly including a plurality of hydrophilic threads for the wicking of reaction water is formed on the major surface of the base portion. A fluid supply channel including a mixing chamber is defined in the base portion and communicating with the fuel cell membrane electrode assembly for supplying a fuel-bearing fluid to the membrane electrode assembly. An exhaust channel including a water recovery and recirculation channel is defined in the base portion and communicating with the membrane electrode assembly and the plurality of hydrophilic threads. The membrane electrode assembly and the cooperating fluid supply channel and cooperating exhaust channel forming a single fuel cell assembly.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: December 9, 2003
    Assignee: Motorola, Inc.
    Inventors: Jay Neutzler, Joseph W. Bostaph, Allison M. Fisher
  • Patent number: 6656339
    Abstract: Methods of forming a nano-supported catalyst on a substrate and at least one carbon nanotube on the substrate are comprised of configuring a substrate with an electrode (102), immersing the substrate with the electrode into a solvent containing a first metal salt and a second metal salt (104) and applying a bias voltage to the electrode such that a nano-supported catalyst is at least partly formed with the first metal salt and the second metal salt on the substrate at the electrode (106). In addition, the method of forming at least one carbon nanotube is comprised of conducting a chemical reaction process such as catalytic decomposition, pyrolysis, chemical vapor deposition, or hot filament chemical vapor deposition o grow at least one nanotube on the surface of the nano-supported catalyst (108).
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: December 2, 2003
    Assignee: Motorola, Inc.
    Inventors: Albert A. Talin, Bernard F. Coll, Kenneth A. Dean, Matthew Stainer
  • Patent number: 6657421
    Abstract: An electronic control circuit for a voltage variable capacitor, the electronic control circuit comprising a plurality of voltage variable capacitors, a plurality of resistors, and a plurality of variable electrical power sources wherein the plurality of voltage variable capacitors, the plurality of resistors, and the plurality of variable electrical power sources are electrically interconnected to form an electronic bias circuit for adjusting a capacitance of the plurality of voltage variable capacitors.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: December 2, 2003
    Assignee: Motorola, Inc.
    Inventors: Rickey G. Pastor, Lei Zhao
  • Patent number: 6654278
    Abstract: A magnetoresistive tunneling junction memory cell comprises a magnetoresistive tunneling barrier (16), a bit magnetic region (15), a reference magnetic region (17), and current lines (20, 30) for inducing an applied magnetic field in the bit and reference magnetic regions. The bit magnetic region has a bit magnetic moment (43, 40,1425, 1625, 1950, 2315) that has a polarity in a bit easy axis (59, 1435) when there is no applied magnetic field. The tunneling barrier and the bit and reference magnetic regions form a magnetoresistive tunneling junction device (10, 72, 73, 74, 75, 76). In some implementations (73, 74, 75), the reference magnetic region has a reference magnetic moment (40, 1430, 1440, 1920, 1925) that is non-parallel to the bit easy axis. In other implementations (76), the reference magnetic region has a magnetization vortex (2310) with a net reference magnetic moment that is essentially zero.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: November 25, 2003
    Assignee: Motorola, Inc.
    Inventors: Bradley N. Engel, Jason Allen Janesky
  • Patent number: 6653911
    Abstract: A stripline integrated circuit apparatus comprising a first ground plane, a stripline section positioned on the first ground plane, the stripline section including N stripline regions where N is a whole number greater than or equal to one, wherein each stripline region includes a stripline sandwiched therebetween a first dielectric layer with a thickness and a second dielectric layer with a thickness where each adjacent stripline is connected in parallel, wherein each adjacent stripline region is separated by a ground plane, a second ground plane positioned on the stripline region, and wherein the plurality of stripline sections are formed and electrically connected in series. The distances between the striplines and the ground planes are adjusted to vary the input and output impedance.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: November 25, 2003
    Assignee: Motorola, Inc.
    Inventors: John C. Estes, Lei Zhao, Anthony M. Pavio, William J. Thompson
  • Patent number: 6653910
    Abstract: A monolithically integrable spiral balun comprises a substrate having first, second, third, and fourth transmission lines formed thereon. The first transmission line has a first end coupled to receive an input signal and has a second end. The first transmission line forms a spiral that winds in a first direction from its first end to its second end. The second transmission line has a first end and has a second end electrically coupled to the second end of the first transmission line. The second transmission line forms a second spiral that winds in a second direction from its first end to its second end. The third transmission line has a first end for providing a first output and a second end for coupling to a first potential. The third transmission line forms a third spiral that interleaves the first spiral and winds in the second direction from its first end to its second end. A fourth transmission line has a first end for providing a second output and a second end for coupling to a second potential.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: November 25, 2003
    Assignee: Motorola, Inc.
    Inventors: Nestor J. Escalera, Rudy M. Emrick
  • Patent number: 6648999
    Abstract: An intermediate low-pressure laminated ceramic device is formed from a plurality of layers of unfired ceramic material each including ceramic particles in an organic binder. A polymer interfacial layer having a glass transition temperature such that it flows at a temperature below a temperature required for the unfired ceramic layers to substantially deform, is deposited on one surface of each of the unfired ceramic layers. The unfired ceramic layers are stacked with an interfacial layer positioned between adjacent unfired ceramic layers in the stack. The stack is heated to a temperature greater than the glass transition temperature of the interfacial layers and a pressure is applied to the heated stack below approximately 1200 psi to fixedly bond the plurality of layers in the stack together.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: November 18, 2003
    Assignee: Motorola, Inc.
    Inventors: Jeremy W. Burdon, Rong Fong Huang
  • Patent number: 6645028
    Abstract: A method for improving uniformity of emission current of a field emission display (100) includes the step of providing a first carbon nanotube (119) and a second carbon nanotube (118), which at least partially define an electron emitter (116). First carbon nantotube (119) is characterized by a first emission current capability and second carbon nanotube (118) is characterized by a second emission current capability, which is less than the first emission current capability. The method further includes the steps of causing first carbon nanotube (119) to be reduced in length at a first rate and, concurrently, causing second carbon nanotube (118) to be reduced in length at a second rate, which is less than the first rate and can be equal to zero, thereby reducing the difference between the second emission current capability and the first emission current capability and, thus, improving uniformity of emission current.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: November 11, 2003
    Assignee: Motorola, Inc.
    Inventors: Kenneth A. Dean, Babu R. Chalamala