Abstract: Provided herein are compositions, systems, and methods for assessing and monitory disease stage and phases, predicting likelihood of disease progression, and predicting and monitoring responses to disease therapies (e.g., in HBV infection).
Type:
Grant
Filed:
May 3, 2019
Date of Patent:
February 25, 2025
Assignee:
Abbott Laboratories
Inventors:
Gavin A. Cloherty, Mary Kuhns, Ka-Cheung Luk, Peter J. Karabatsos
Abstract: Example automated diagnostic analyzers and methods for using the same are disclosed herein. An example apparatus described herein includes a first carousel rotatably coupled to a base and having a first axis of rotation. The example apparatus includes a second carousel rotatably coupled to the base and vertically spaced over the first carousel such that at least a portion of the second carousel is disposed over the first carousel. In the example apparatus, the second carousel has a second axis of rotation and a plurality of vessels. The example apparatus also includes a pipetting mechanism offset from the second axis of rotation. The example pipetting mechanism is to access the first carousel and the second carousel.
Type:
Grant
Filed:
November 21, 2022
Date of Patent:
February 18, 2025
Assignees:
Abbott Laboratories, Canon Medical Systems Corporation
Inventors:
Brian L. Ochranek, David C. Arnquist, Takehiko Oonuma, Hirotoshi Tahara, Naoto Sato
Abstract: A diagnostic analyzer includes a rotating device, a first optical reader, and a second optical reader. The rotating device includes a first darkened compartment, a second darkened compartment, and an optical path along which the first darkened compartment and the second darkened compartment travel. The first optical reader is operable to read the first darkened compartment and the second optical reader is operable to read the second darkened compartment.
Abstract: Example methods, apparatus, systems for droplet actuator fabrication are disclosed. An example non-transitory computer readable medium includes instructions that, when executed, cause at least one processor to at least control movement of a laser to cause the laser to etch an electrode pattern in a first substrate, the electrode pattern including a first set of electrodes, a second set of electrodes, and a third set of electrodes; control a printer driver to cause a hydrophobic material and a dielectric material to be applied to the second set of electrodes and not the first set of electrodes via a printer; control a bonding driver to cause a gap to be defined between the first substrate and a second substrate; and control a dicing driver to cause a portion the first substrate and a portion of the second substrate to be cut into a droplet actuator.
Type:
Grant
Filed:
November 10, 2020
Date of Patent:
January 21, 2025
Assignee:
Abbott Laboratories
Inventors:
Andrew Fischer, Adrian Petyt, Sophie Laurenson
Abstract: Disclosed herein are methods that aid in the diagnosis and evaluation of a human subject that has sustained or may have sustained an injury to the head, such as mild or moderate, severe, or moderate to severe traumatic brain injury (TBI), using cTnI. Also disclosed are methods for determining whether to perform a head computerized tomography on a subject by detecting levels of cTnI. Finally, also disclosed are methods of outcome in subjects suffering from a mild TBI.
Abstract: Disclosed herein are methods that aid in the diagnosis and evaluation of a human subject that has sustained or may have sustained an injury to the head, such as mild or moderate to severe traumatic brain injury (TBI), using an early biomarker, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1). Also disclosed here are methods that aid in determining whether a human subject that has sustained an injury or may have sustained to the head would benefit from and thus receive a head computerized tomography (CT) scan based on the levels of UCH-L1. These methods involve detecting levels and changes in levels of UCH-L1 in one or more samples taken from a human subject at time points within 24 hours after the subject has sustained or may have sustained an injury to the head.
Abstract: A stabilized fabric composed of a mesh or a woven fabric is disclosed as are methods of their manufacture, the manufacture of medical devices made using a stabilized fibers and stabilized medical devices are all disclosed. Fabrics can be stabilized by several techniques including: using mechanical, chemical and/or energetic fasteners at warp and weft intersections in the weave; by using various weaving techniques and fibers. Meshes can be stabilized when properly dimensioned and arranged junctions and struts of the necessary properties are used. All of these stabilized fabrics can be made of synthetic polymer materials such as ultrahigh molecular weight PE or PP and expanded PTFE.
Abstract: In one aspect, a computer readable memory medium comprising program instructions for graphically developing a connectivity driver is provided. The computer readable memory medium is a non-transitory medium. The program instructions are executable by a processor to generate a purchase order for a laboratory item, transmit the purchase order to a remote computer in order to communicate the purchase order to a vendor, receive an advance shipping notice generated in response to the purchase order, receive item information stored in an RFID tag of a tagged item received at the delivery location, and check the item information against the advance shipping notice in order to verify that the tagged item is the same as the ordered laboratory item. The purchase order specifies a delivery location.
Type:
Grant
Filed:
May 23, 2023
Date of Patent:
November 12, 2024
Assignee:
Abbott Laboratories
Inventors:
John Curtis Jones, Patrick P. Fritchie, Steve Kotlinski, Jay Brian Sailer, Pathik H. Soni, Erich Iwen, Ronald R. Hohs, William B. Williams
Abstract: Methods and apparatus to reduce biological carryover using induction heating are disclosed herein. An example method includes washing an aspiration and dispense device. The example method includes generating an alternating electromagnetic field and introducing the aspiration and dispense device into the alternating electromagnetic field. The example method includes inductively heating the aspiration and dispense device with the alternating electromagnetic field. In the example method, the washing is to occur in concert with the heating.
Abstract: Disclosed herein are methods of aiding in the diagnosis and evaluation of a subject that has sustained or may have sustained an injury to the head. For example, the present disclosure provides methods for aiding in the diagnosis and evaluation of a subject to determine whether the subject has sustained a traumatic brain injury (TBI) by detecting or measuring a combination of the levels of ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) in samples taken at various time points within 48 hours after the subject has sustained or may have sustained an injury to the head.
Abstract: Disclosed herein are methods, and kits for use in said methods, that aid in the diagnosis and evaluation of a subject that has sustained an orthopedic injury and sustained or may have sustained an injury to the head, such as mild traumatic brain injury (TBI), using ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), glial fibrillary acidic protein (GFAP), or a combination thereof. Also disclosed herein are methods, and kits for use in said methods, that aid in determining whether a subject that has sustained an orthopedic injury and sustained or may have sustained an injury to the head would benefit from and thus receive an imaging procedure, such as MRI or head computerized tomography (CT) scan based on the levels of GFAP and/or UCH-L1. These methods involve detecting levels and changes in levels of GFAP and/or UCH-L1 in biological samples taken from a subject at time points within 48 hours after the subject has sustained or may have sustained an injury to the head.
Type:
Grant
Filed:
May 10, 2021
Date of Patent:
October 1, 2024
Assignee:
Abbott Laboratories
Inventors:
Beth McQuiston, Saul A. Datwyler, Raj Chandran
Abstract: Aqueous lipid emulsions for providing enteral nutrition are provided. The aqueous lipid emulsions include at least 33% of lipids, lipid soluble nutrients, or a combination thereof, based upon the total weight of the emulsion, and are essentially free of carbohydrate and protein. The aqueous lipid emulsions are shelf-stable for at least 7 months. The aqueous lipid emulsions are a source of supplemental enteral nutrition for any patient in need thereof, including preterm infants.
Type:
Grant
Filed:
February 19, 2019
Date of Patent:
September 24, 2024
Assignee:
Abbott Laboratories
Inventors:
Stephen J. Demichele, Mustafa Vurma, Megan Terp
Abstract: A stabilized fabric composed of a mesh or a woven fabric is disclosed as are methods of their manufacture, the manufacture of medical devices made using a stabilized fibers and stabilized medical devices are all disclosed. Fabrics can be stabilized by several techniques including: using mechanical, chemical and/or energetic fasteners at warp and weft intersections in the weave; by using various weaving techniques and fibers. Meshes can be stabilized when properly dimensioned and arranged junctions and struts of the necessary properties are used. All of these stabilized fabrics can be made of synthetic polymer materials such as ultrahigh molecular weight PE or PP and expanded PTFE.
Abstract: A device for closing a tissue opening includes a proximal housing portion having a first portion, a second portion, a third portion, and a fourth portion. The first portion and the fourth portion extending transversely to a longitudinal axis of the proximal housing portion on opposite sides of the proximal housing portion. A distal portion extends from the proximal housing portion. At least the second portion and the third portion are configured to move toward the first portion.
Type:
Grant
Filed:
May 30, 2022
Date of Patent:
August 27, 2024
Assignee:
Abbott Laboratories
Inventors:
Erik K. Walberg, Timothy C. Reynolds, Brian A. Ellingwood, Kai Yenkai Jair, Anthony J. Pantages
Abstract: Example apparatus and methods related to automated diagnostic analyzers having rear accessible track systems are described herein. An example apparatus disclosed herein includes an analyzer to perform a diagnostic test. The analyzer has a first side and a second side opposite the first side. The example apparatus includes a loading bay disposed on the first side of the analyzer to receive a first carrier and a pipetting mechanism coupled to the analyzer adjacent the second side. The example apparatus also includes a first carrier shuttle to transport the first carrier from a first location adjacent the loading bay to a second location adjacent the pipetting mechanism and a track disposed adjacent the second side of the analyzer to transfer a second carrier to a third location adjacent the pipetting mechanism.
Type:
Grant
Filed:
September 20, 2021
Date of Patent:
June 11, 2024
Assignees:
Abbott Laboratories, Canon Medical Systems Corporation
Inventors:
Brian L. Ochranek, David C. Arnquist, Takehiko Oonuma, Hirotoshi Tahara, Naoto Sato, Bradley P. Smith
Abstract: Disclosed are nutritional compositions including human milk oligosaccharides in combination with long chain polyunsaturated fatty acids and/or carotenoids that can be administered to preterm infants, term infants, toddlers, and children for reducing inflammation and the incidence of inflammatory diseases.
Type:
Grant
Filed:
April 12, 2021
Date of Patent:
May 7, 2024
Assignee:
Abbott Laboratories
Inventors:
Rachael Buck, Geralyn O. Duska-Mcewen, Joseph P. Schaller
Abstract: The instant disclosure provides nucleic acid amplification systems and multi-reaction analysis systems useful in the efficient processing of samples, including clinical samples. Integrated systems that include nucleic acid amplification devices functionally combined with multi-reaction analysis systems are also included. Also provided are methods for monitoring multiple concurrent nucleic acid amplification reactions that include the use of devices and systems described herein.
Type:
Grant
Filed:
September 30, 2020
Date of Patent:
February 27, 2024
Assignee:
Abbott Laboratories
Inventors:
Sonal Sadaria Nana, Eric B. Shain, Michael S. Hazell, Eric D. Yeaton, Michael Giraud, Timothy J. Patno, Ali Attarwalla, Dean Khan, Matthew J. Hayes
Abstract: Cradles for draining liquid from containers are described herein. An example apparatus includes a housing having a bottom wall, a side wall and an open top. The housing is to receive a container having liquid. The example apparatus includes a probe extending upward from the bottom wall toward the open top and is to drain the liquid from the container when the probe is inserted into the container. The example apparatus also includes a sliding lock slidably disposed within the housing that receives a cap or top of the container when the container is inserted into the housing. The sliding lock includes a key slot. The sliding lock is movable when a cap or top of the container has a matching key that engages the key slot, which enables the sliding lock to move downward to expose the probe and drain the liquid from the container.
Abstract: Liquid nutritional compositions have an off-white color with a Hunter L value not less than 68, and comprise (a) a protein; (b) a carbohydrate; (c) an oxidizable fish oil containing an omega-3 polyunsaturated fatty acid; (d) rosmarinic acid; and (e) ferric iron comprising ferric orthophosphate and/or ferric pyrophosphate. The liquid nutritional compositions exhibit reduced off-flavors and aromas typically encountered in compositions including fish oil.
Type:
Grant
Filed:
March 27, 2018
Date of Patent:
October 17, 2023
Assignee:
Abbott Laboratories
Inventors:
Normanella Dewille, Megan Terp, Allison Atnip, Tapas Das
Abstract: A diagnostic analyzer includes a rotating device, a first optical reader, and a second optical reader. The rotating device includes a first darkened compartment, a second darkened compartment, and an optical path along which the first darkened compartment and the second darkened compartment travel. The first optical reader is operable to read the first darkened compartment and the second optical reader is operable to read the second darkened compartment.