Patents Assigned to Advanced Analogic Technologies, Inc.
  • Patent number: 7825488
    Abstract: A variety of isolation structures for semiconductor substrates include a trench formed in the substrate that is filled with a dielectric material or filled with a conductive material and lined with a dielectric layer along the walls of the trench. The trench may be used in combination with doped sidewall isolation regions. Both the trench and the sidewall isolation regions may be annular and enclose an isolated pocket of the substrate. The isolation structures are formed by modular implant and etch processes that do not include significant thermal processing or diffusion of dopants so that the resulting structures are compact and may be tightly packed in the surface of the substrate.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: November 2, 2010
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Patent number: 7812647
    Abstract: A gate driver for a power MOSFET in, for example, a DC-DC converter switches the MOSFET between a fully-on condition and a low-current condition instead of switching the MOSFET between fully-on and fully-off conditions. The amount of charge that must be transferred to charge and discharge the gate of the MOSFET is thereby reduced, and the efficiency of the MOSFET is improved. A feedback circuit may be used to assure that the magnitude of current in the power MOSFET in its low-current condition is correct. Alternatively, a trimming process may be used to correct the magnitude of the voltage supplied by the gate driver to the gate of the power MOSFET in the low-current condition.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: October 12, 2010
    Assignee: Advanced Analogic Technologies, Inc.
    Inventor: Richard K. Williams
  • Patent number: 7812393
    Abstract: All low-temperature processes are used to fabricate a variety of semiconductor devices in a substrate the does not include an epitaxial layer. The devices include a non-isolated lateral DMOS, a non-isolated extended drain or drifted MOS device, a lateral trench DMOS, an isolated lateral DMOS, JFET and depletion-mode devices, and P-N diode clamps and rectifiers and junction terminations. Since the processes eliminate the need for high temperature processing and employ “as-implanted” dopant profiles, they constitute a modular architecture which allows devices to be added or omitted to the IC without the necessity of altering the processes used to produce the remaining devices.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: October 12, 2010
    Assignee: Advanced Analogic Technologies, Inc.
    Inventors: Richard K. Williams, Donald Ray Disney, Jun-Wei Chen, Wai Tien Chan, HyungSik Ryu
  • Patent number: 7812668
    Abstract: A multi-input operational amplifier comprises two transconductors, two current mirrors, and a current source. Each transconductor generates a current according to a corresponding voltage difference. When the voltage difference is less than or equal to zero, the current is a constant. When the voltage difference exceeds zero, the current is proportional to the voltage difference.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: October 12, 2010
    Assignee: Advanced Analog Technology, Inc.
    Inventor: Yung Ching Chang
  • Patent number: 7812579
    Abstract: A DC/DC converter includes a pre-converter stage, which may include a charge pump, and a post-regulator stage, which may include a boost converter. The duty factor of the post-regulator stage is controlled by a feedback path that extends from the output terminal of the DC/DC converter to an input terminal in the post-regulator stage. The pre-converter steps the input DC voltage up or down by a positive or negative integral or fractional value, and the post-regulator steps the voltage up by a variable amount depending on the duty factor at which the post-regulator is driven. The converter overcomes the problems of noise glitches, poor regulation, and instability, even near unity input-to-output voltage conversion ratios.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: October 12, 2010
    Assignee: Advanced Analogic Technologies, Inc.
    Inventor: Richard K. Williams
  • Patent number: 7812403
    Abstract: An isolated CMOS pair of transistors formed in a P-type semiconductor substrate includes an N-type submerged floor isolation region and a filled trench extending downward from the surface of the substrate to the floor isolation region. Together the floor isolation region and the filled trench form an isolated pocket of the substrate which contains a P-channel MOSFET in an N-well and an N-channel MOSFET in a P-well. The substrate does not contain an epitaxial layer, thereby overcoming the many problems associated with fabricating the same.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: October 12, 2010
    Assignee: Advanced Analogic Technologies, Inc.
    Inventors: Donald R. Disney, Richard K. Williams
  • Patent number: 7804360
    Abstract: The dead-time locking circuit includes phase detector and a delay-comparator. The delay-comparator includes two input ends for receiving phase adjusting signal and the input-exchanging signal received by the class D amplifier. After comparing, the delay-comparator outputs a gate driving signal. The phase detector detects the phase difference between the output signal of the class D amplifier and the gate driving signal of the power transistor of the class D amplifier, and accordingly adjusts the rising/falling edges of the gate driving signal outputted from and the comparator via the charge-pump. In this way, the dead-time can be locked at the predetermined value.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: September 28, 2010
    Assignee: Advanced Analog Technology, Inc.
    Inventor: Chien-Hao Chiu
  • Patent number: 7800198
    Abstract: A variety of isolation structures for semiconductor substrates include a trench formed in the substrate that is filled with a dielectric material or filled with a conductive material and lined with a dielectric layer along the walls of the trench. The trench may be used in combination with doped sidewall isolation regions. Both the trench and the sidewall isolation regions may be annular and enclose an isolated pocket of the substrate. The isolation structures are formed by modular implant and etch processes that do not include significant thermal processing or diffusion of dopants so that the resulting structures are compact and may be tightly packed in the surface of the substrate.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: September 21, 2010
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Patent number: 7795681
    Abstract: A lateral MOSFET formed in a substrate of a first conductivity type includes a gate formed atop a gate dielectric layer over a surface of the substrate, a drain region of a second conductivity type, a source region of a second conductivity type, and a body region of the first conductivity type which extends under the gate. The body region may have a non-monotonic vertical doping profile with a portion located deeper in the substrate having a higher doping concentration than a portion located shallower in the substrate. The lateral MOSFET may be drain-centric, with the source region and an optional dielectric-filled trench surrounding the drain region.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: September 14, 2010
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Patent number: 7786712
    Abstract: A DC/DC converter includes a pre-regulator stage, which may include a boost converter, and a post-converter stage, which may include a charge pump. The duty factor of the pre-regulator stage is controlled by a feedback path that extends from the output terminal of the pre-regulator stage or the post-converter stage. The pre-regulator steps the input DC voltage up by a variable amount depending on the duty factor, and the post-converter steps the voltage at the output of the pre-regulator up or down by an positive or negative integral or fractional value. The converter overcomes the problems of noise glitches, poor regulation, and instability, even near unity input-to-output voltage conversion ratios.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: August 31, 2010
    Assignee: Advanced Analogic Technologies, Inc.
    Inventor: Richard K. Williams
  • Patent number: 7782027
    Abstract: A DC/DC converter includes a pre-regulator stage, which may include a Buck converter, and a post-converter stage, which may include a charge pump. The duty factor of the pre-regulator stage is controlled by a feedback path that extends from the output terminal of the pre-regulator stage or the post-converter stage. The pre-regulator steps the input DC voltage down by a variable amount depending on the duty factor, and the post-converter steps the voltage at the output of the pre-regulator up or down by an positive or negative integral or fractional value. The converter overcomes the problems of noise glitches, poor regulation, and instability, even near unity input-to-output voltage conversion ratios.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: August 24, 2010
    Assignee: Advanced Analogic Technologies, Inc.
    Inventor: Richard K. Williams
  • Patent number: 7777459
    Abstract: A DC/DC converter includes a pre-converter stage, which may include a charge pump, and a post-regulator stage, which may include a Buck converter. The duty factor of the post-regulator stage is controlled by a feedback path that extends from the output terminal of the DC/DC converter to an input terminal in the post-regulator stage. The pre-converter steps the input DC voltage up or down by a positive or negative integral or fractional value, and the post-regulator steps the voltage down by a variable amount depending on the duty factor at which the post-regulator is driven. The converter overcomes the problems of noise glitches, poor regulation, and instability, even near unity input-to-output voltage conversion ratios.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: August 17, 2010
    Assignee: Advanced Analogic Technologies, Inc.
    Inventor: Richard K. Williams
  • Patent number: 7759200
    Abstract: A lateral trench MOSFET includes a trench containing a device segment and a gate bus segment. The gate bus segment of the trench is contacted by a conductive plug formed in a dielectric layer overlying the substrate, thereby avoiding the need for the conventional surface polysilicon bridge layer. The conductive plug is formed in a substantially vertical hole in the dielectric layer. The gate bus segment may be wider than the device segment of the trench. A method includes forming a shallow trench isolation (STI) while the conductive material in the trench is etched.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: July 20, 2010
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Donald Ray Disney, Cho Chiu Ma
  • Patent number: 7759731
    Abstract: A lateral trench MOSFET includes a trench containing a device segment and a gate bus segment. The gate bus segment of the trench is contacted by a conductive plug formed in a dielectric layer overlying the substrate, thereby avoiding the need for the conventional surface polysilicon bridge layer. The conductive plug is formed in a substantially vertical hole in the dielectric layer. The gate bus segment may be wider than the device segment of the trench. A method includes forming a shallow trench isolation (STI) while the conductive material in the trench is etched.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: July 20, 2010
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Donald Ray Disney, Cho Chiu Ma
  • Patent number: 7746042
    Abstract: The synchronous rectifier MOSFET in a Buck or boost DC/DC converter is operated as a current source rather than being turned off, thereby reducing undesirable losses in efficiency, the generation of unwanted electrical and radiated noise, and numerous other potential problems, particularly when the converter is operating in a light-load condition.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: June 29, 2010
    Assignee: Advanced Analogic Technologies, Inc.
    Inventors: Richard K. Williams, Kevin P. D'Angelo
  • Patent number: 7745883
    Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: June 29, 2010
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chen
  • Patent number: 7741820
    Abstract: A PWM controller for controlling a switching voltage regulator comprises a first comparator, a second comparator and a third comparator. The first comparator is configured to detect voltages of a first node and a second node so as to determine whether to stop the PWM controller. The PWM controller is stopped if a first potential is lower than a threshold, and the first potential derives from the voltage of the first node by a level shift of a first voltage difference. The second comparator is configured to detect the voltage of the first node and then to compare the voltage with a power reference voltage so as to determine whether the PWM controller receives necessary power. The third comparator is configured to compare the voltage of the second node with an enable reference voltage so as to determine whether to disable the PWN controller.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: June 22, 2010
    Assignee: Advanced Analog Technology, Inc.
    Inventors: Hsiang Lin Huang, Kent Huang, Mao Chuan Chien, Shun Hau Kao
  • Patent number: 7741661
    Abstract: Various integrated circuit devices, including a lateral DMOS transistor, a quasi-vertical DMOS transistor, a junction field-effect transistor (JFET), a depletion-mode MOSFET, and a diode, are formed inside an isolation structure which includes a floor isolation region and a trench extending from the surface of the substrate to the floor isolation region. The trench may be filled with a dielectric material or may have a conductive material in a central portion with a dielectric layer lining the walls of the trench. Various techniques for terminating the isolation structure by extending the floor isolation region beyond the trench, using a guard ring, and a forming a drift region are described.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: June 22, 2010
    Assignee: Advanced Analogic Technologies, Inc.
    Inventors: Donald R. Disney, Richard K. Williams
  • Publication number: 20100149713
    Abstract: Devices, such as mobile devices, may be exposed to short circuit and output overload events. To protect against such events, mobile devices typically include circuitry to limit currents so as not to exceed a pre-programmed current limit. Various embodiments of the present invention include devices and methods for detecting pre-programmed current limits and for limiting currents in response to such detection. In some embodiments, both the current limit detector and the current limit controller circuitry include scaled current switches. The scaling may be substantially similar between the programmed-current limit detector and the current limit controller circuitry.
    Type: Application
    Filed: March 1, 2010
    Publication date: June 17, 2010
    Applicant: Advanced Analogic Technologies, Inc.
    Inventor: John So
  • Patent number: 7738224
    Abstract: An Electro-Static Discharge (ESD) protection device is formed in an isolated region of a semiconductor substrate. The ESD protection device may be in the form of a MOS or bipolar transistor or a diode. The isolation structure may include a deep implanted floor layer and one or more implanted wells that laterally surround the isolated region. The isolation structure and ESD protection devices are fabricated using a modular process that includes virtually no thermal processing. Since the ESD device is isolated, two or more ESD devices may be electrically “stacked” on one another such that the trigger voltages of the devices are added together to achieve a higher effective trigger voltage.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: June 15, 2010
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Donald Ray Disney, Jun-Wei Chen, Richard K. Williams, HyungSik Ryu, Wai Tien Chan