Abstract: A coherent optical receiver includes a local oscillator (LO) laser configured to provide an LO signal. The LO laser includes a hybrid external cavity and an active gain medium within the hybrid external cavity, where the LO laser is defined between a first optical reflector on a chip including the active gain medium and a second optical reflector not on the chip.
Abstract: Described herein is a method for identifying an aberrant feature on a nucleic acid array. In general terms, the method comprises: a) obtaining a log transformed normalized value indicating the amount of hybridization of a test sample to a first feature on the nucleic acid array; b) calculating a z-score for the first feature using: the log transformed normalized value; and the distribution of reference log transformed normalized values that indicate the amount of hybridization of control samples to the same feature on a plurality of reference arrays; and c) identifying the test feature as aberrant if it has a z-score that is above or below a defined threshold.
Abstract: Methods for clustering a data set from a biological assay are provided. Aspects of the methods include applying statistical analyses to bisected subsets of the data at selected cut-of values to identify one or more break points in the data set. In certain aspects, the statistical analyses employed are based on determining the p-values of two-tailed t-tests calculated using the bisected data at each cut-off value. Aspects of the invention further include computer programming and systems which are configured to cluster data sets from biological assays according to the subject methods.
Abstract: Methods, apparatus and systems for acquiring spectrometric data from analyte ions implement a combination of drift-type ion mobility (IM) separation and time-of-flight mass spectrometry (TOF MS). Both separation techniques are carried out in tandem while applying mass filtering with a wide window of ion isolation. One mode of operation entails utilizing a mass filter to limit ion packets to ions in a selected m/z range that remains constant over the entire course of data acquisition. Another mode entails utilizing the mass filter to limit ion packets to an m/z range that varies over the course of data acquisition.
Abstract: An adjustable aperture device for an electromagnetic radiation detecting apparatus includes a position adjustment body configured for adjusting a position of a selected aperture hole of multiple selectable aperture holes, where electromagnetic radiation propagates through the selected aperture hole. The adjustable aperture device further includes a guide unit configured for guiding the position adjustment body along a predefined guide direction, and an aperture body defining the aperture holes and including multiple engagement sections, where the adjustment body is engagable in a selectable one of the engagement sections to thereby select the selected aperture hole. The adjustable aperture device further includes a pre-loading element configured for pre-loading the position adjustment body towards the aperture body, and a drive unit configured for driving the aperture body to move so that the position adjustment body is engaged in a respective one of the plurality of engagement sections.
Abstract: An apparatus comprises: a first signal source; a dopant profile measurement module (DPPM) configured to receive a portion of the signal from the signal source; a probe tip connected to the reflective coupler; a load connected in parallel with the probe tip; and a second signal source connected to a load, wherein the signal source is configured to provide an amplitude-modulated (AM) signal to the probe tip. A method is also described.
Type:
Grant
Filed:
March 30, 2010
Date of Patent:
June 25, 2013
Assignee:
Agilent Technologies, Inc.
Inventors:
Hassan Tanbakuchi, Roger B. Stancliff, Timothy M. Graham, Wenhai Han
Abstract: A device for improving transient response of a power supply includes a diode connected in series with an output of the power supply and configured to provide a predetermined voltage drop to an output voltage of the power supply. The device further includes a source follower transistor connected in parallel with the diode and configured to be selectively activated to remove at least a portion of the predetermined voltage drop of the diode from the output voltage of the power supply during a transient period, in which an output current of the device is increasing.
Abstract: A composite transmission line transformer includes at least one core, a first port, a second port, and one or more pairs of transmission lines wound about the core(s). Each transmission line is in signal communication with the first port and the second port. For each pair, the transmission lines are interconnected in series at the first port and at the second port such that the first port and the second port are DC-isolated from each other.
Abstract: A system for packetizing parallel image data for serial transmission includes a software element configured to receive a bitmap image file comprising R, G and B pixel data, receive information relating to display and timing information associated with a device under test, receive a vertical synchronization signal, and receive at least one horizontal synchronization signal, packetize the vertical synchronization signal, wait a period of time before packetizing the horizontal synchronization signal, and packetize the R, G, and B pixel data associated with the bitmap image file to form a parallel packet stream. The system also includes a hardware element comprising a parallel data sequencer comprising a memory, the memory configured to store the parallel packet stream, a parallel-to-serial converter configured to convert the parallel packet stream into a serial packet stream, and a serial line driver configured to transfer the serial packet stream to a device under test.
Abstract: In an embodiment, a collision cell comprises rods each having a first end and a second end remote from the first end; an inductor connected between adjacent pairs of rods; and means for applying a radio frequency (RF) voltage between adjacent pairs of rods. The RF voltage creates a multipole field in a region between the rods; and means for applying a direct current (DC) voltage drop along a length of each of the rods.
Abstract: A trace gas sensing apparatus includes a cathode, an anode, a vacuum enclosure, and a membrane. The anode coaxially surrounds the cathode, wherein the cathode and the anode define an annular ionization chamber. The vacuum enclosure surrounds the cathode and the anode and includes a gas inlet fluidly communicating with the ionization chamber. The membrane is coupled to the gas inlet in a sealed manner and is permselective to trace gas. The apparatus may further include circuitry for applying a negative voltage potential to the cathode and for measuring an ion current signal generated by the cathode, and a magnet assembly for generating a magnetic field in the ionization chamber. The cathode may include an elongated member located along a longitudinal axis, and first and second end plates orthogonal to the longitudinal axis.
Type:
Grant
Filed:
November 2, 2010
Date of Patent:
June 4, 2013
Assignee:
Agilent Technologies, Inc.
Inventors:
David Wall, J. Daniel Geist, Stephen M. Elliott
Abstract: A reagent for oligonucleotide synthesis or purification, wherein the reagent has a structure of: X—C-L-H??(Formula A) wherein X is a phosphoramidite group, an H-phosphonate group, an acetal group, or an isocyanate; C is a direct bond or a cleavable adaptor represented by —Ca-Cb—; L is a hydrocarbyl chain; and H is a terminal alkyne or an activated cyclooctyne. The reagent of Formula (A) can be used in the synthesis and purification of oligonucleotides.
Abstract: A two-dimensional liquid chromatography in a system (200) comprises a first liquid chromatograph (210) coupled with a second liquid chromatograph (220). An injection event of injecting an output of the first liquid chromatograph (210) into the second liquid chromatograph (220) is controlled (290) in relation to a state (600, 610; 620, 630) of the second liquid chromatograph (220). FIG.
Abstract: A fitting element (100), in particular for an HPLC application (10), is configured for providing a fluidic coupling of a tubing (102) to a fluidic device (103). The fitting element (100) comprises a gripping piece (108) to exert—upon coupling of the tubing (102) to the fluidic device (103)—a grip force (G) between the fitting element (100) and the tubing (102). The gripping piece (108) comprises a hydraulic element (170) configured to transform an axial force (S) into a hydraulic pressure (P) within the hydraulic element (170). The hydraulic pressure (P) in the hydraulic element (170) causes the grip force (G).
Abstract: A method and system for predistorting signals provides a test signal to model a non-linear component. Model kernels representative of static and dynamic parts of the model are extracted from an output of the non-linear component responsive to the test signal. The dynamic part represents memory effects of the non-linear component. The model kernels are then used to calculate an inverse memory model component model. An input signal is predistorted using the inverse memory model.
Abstract: A method for determining an efficiency of target enrichment from a DNA library, includes: adding a negative control sequence and a positive control sequence to the DNA library, or picking a negative control sequence and/or a positive control sequence from the library; determining a pre-capture amount of the negative control sequence and a pre-capture amount of the positive control sequence; performing enrichment of a target sequence from the DNA library using a bait sequence to produce a post-capture library; determining a post-capture amount of the negative control sequence and a post-capture amount of the positive control sequence in the post-capture library; and determining the efficiency of the target enrichment, based on the post-capture amount of the positive control sequence, the post-capture amount of the negative control sequence, the pre-capture amount of the positive control sequence, and the pre-capture amount of the negative control sequence.
Abstract: A plasma torch comprises: a glass inner tube comprising an outlet where a plasma is formed; a glass outer tube comprising at least three inlets for receiving a cooling gas and distributing the cooling gas between the glass outer tube and the glass inner tube; and a cartridge housing comprising a gas receiving inlet, the glass outer tube being in fluid communication with the gas receiving inlet. Any two of the at least three inlets are radially offset by fewer than 180°.
Abstract: A method and apparatus for compensating for third-order intermodulation (IM) distortion in a receiver by passing a received signal through a detector to obtain a second-order difference signal, combining the 2nd-order signal with the received signal in a multiplier to obtain a 3rd-order IM signal, adjusting a parameter such as amplitude, phase or quadrature amplitude of the 3rd-order IM signal, and coupling the 3rd-order IM signal into the received signal.
Abstract: A waveform reconstruction system and method for using the same are disclosed. The system includes an RF down-converter that receives a signal and outputs a down-converted signal. A demodulator demodulates the down-converted signal to generate a recovered digital data stream. A pattern detector detects a predetermined pattern in the recovered digital data stream. A delay generator delays the down-converted signal and outputs a delayed copy thereof. A signal processing circuit combines the delayed copy with previously received delayed copies of the down-converted signal to reconstruct an averaged waveform from the plurality of delayed copies having the predetermined pattern.
Type:
Grant
Filed:
February 22, 2010
Date of Patent:
May 21, 2013
Assignee:
Agilent Technologies, Inc.
Inventors:
Christopher K. Sutton, Lawrence D. Bennett