Patents Assigned to Agilent Technologies
  • Publication number: 20120194373
    Abstract: A device for driving a switch in a digital-to-analog converter (DAC) includes first and second latches, and a logic gate. The first latch is configured to store a digital input data signal according to a clock signal, and to output a first latch signal corresponding to the stored digital input data signal. The second latch is configured to store the first latch signal output by the first latch according to a logical inverse of the clock signal, and to output a second latch signal corresponding to the stored first latch signal. The logic gate is configured to perform an OR logic operation on the first latch signal and the second latch signal, the logic gate outputting a drive signal for driving a switch in the DAC connected to a current source.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventor: Gunter Steinbach
  • Patent number: 8232055
    Abstract: Comparative genomic hybridization assays and compositions for use in practicing the same are provided. A characteristic of the subject comparative genomic hybridization assays is that solid support immobilized oligonucleotide feature elements, e.g., in the form of an array, are employed. Specifically, at least first and second nucleic acid populations prepared from genomic templates are contacted with a plurality of distinct oligonucleotide feature elements immobilized on a solid support surface and the binding of the at least first and second populations is then evaluated. Also provided are kits for use in practicing the subject methods.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: July 31, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Laurakay Bruhn, Alicia F. Scheffer, Michael T. Barrett, Douglas A. Amorese, Stephen S. Laderman
  • Publication number: 20120184724
    Abstract: A nucleoside monomer that is protected by a thionocarbamate protecting group and contains one or more 2H, 13C, or 15N isotopes in the ribose and/or base part is provided, as well as a method for making a polynucleotide that uses the same. Also provided is a polynucleotide synthesis method that employs a diamine to deprotect a protected polynucleotide.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 19, 2012
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Agnieszka B. Sierzchala, Brian Phillip Smart, Douglas J. Dellinger, Geraldine Dellinger, Joel Myerson, Zoltan Timar
  • Patent number: 8223830
    Abstract: A system for filtering a data signal includes an input configured to receive the data signal through a transmission medium and a filter configured to remove distortion from the received data signal using equalization coefficients. The system further includes a processing unit configured to determine dynamically the equalization coefficients of the filter without using a predetermined training pattern in the received data signal.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: July 17, 2012
    Assignee: Agilent Technologies, Inc.
    Inventor: Steven D. Draving
  • Patent number: 8224269
    Abstract: A vector modulator calibration system (“VMCS”) for obtaining a calibrated modulated output signal while minimizing spurious output signals from a vector modulator is shown. The VMCS may include a power sensor in signal communication with the vector modulator and a digitizer in signal communication with the power sensor.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: July 17, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Roger L. Jungerman, Geoffrey Hopcraft, Zoltan Azary
  • Patent number: 8225152
    Abstract: A hierarchical test executive system comprising and including Procedure, Test, Measurement and Datapoint levels. A Procedure is an ordered list of Tests; a Test is a group of Measurements in a Procedure that share the same test algorithm, and thus the same software code; a Measurement is a configuration or setup for a Test, and provides parameters to a Test; and a Datapoint is a subset of a Measurement containing additional parameters that select a result when one Measurement generates multiple results. When initiated, the test executive system presents a list of models and the user selects a model to be tested. The program then uploads the test software corresponding to the selected model and presents a list and descriptions of Procedures to the user. The user selects one of the Procedures, and the program retrieves the selected procedure from the test software and expands it into Tests, Measurements and Datapoints as determined by the Procedure.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: July 17, 2012
    Assignee: Agilent Technologies, Inc.
    Inventor: Christopher K Sutton
  • Patent number: 8221978
    Abstract: A method of selecting a set of normalization probes for use on a comparative genome hybridization array is provided. In certain embodiments, the method includes: a) selecting a first region of a genome to be evaluated by comparative genome hybridization to produce data; b) selecting a second region of the genome for normalization of the data, and c) selecting from a set of candidate probes a sub-set of normalization probes that detect the second region.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: July 17, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Jing Gao, B. Shane Giles, Peter G. Webb, Douglas N. Roberts
  • Patent number: 8222932
    Abstract: A phase-locked loop includes: a voltage-controlled oscillator (VCO) system receiving one or more control signals and in response thereto generating a PLL output signal; a plurality of phase detectors for comparing a reference signal having a reference frequency to a PLL feedback signal having a PLL feedback frequency derived from the PLL output signal, and in response thereto to output a comparison signal; and a plurality of signal processing paths each connected to an output of a corresponding one of the phase detectors for outputting a phase detection output signal. The signal processing paths have different frequency responses from each other. In operation only one of the phase detectors is activated, and a switching arrangement selectively switches between outputs of the signal processing paths to select the phase detection output signal from the activated phase detector to generate the control signal(s) for the VCO system.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: July 17, 2012
    Assignee: Agilent Technologies, Inc.
    Inventor: Murat Demirkan
  • Patent number: 8217343
    Abstract: A device includes a first substrate having a principal surface having a plurality of sample sites having a corresponding sample; a second substrate having a principal surface facing and spaced apart from the principal surface of the first substrate, the second substrate having a plurality of ultraviolet emission sites corresponding to the sample sites of the first substrate, each of the ultraviolet emission sites being spaced apart from and facing a corresponding one of the sample sites of the first substrate, each of the ultraviolet emission sites being configured to emit ultraviolet light to a corresponding one of the sample sites on the first substrate, and to ionize at least a portion of a sample provided at each sample site; and an ion extraction device configured to extract ions from a gap between the first substrate and the structure.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: July 10, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: James Edward Cooley, Viorica Lopez-Avila, Randall Urdahl
  • Patent number: 8213015
    Abstract: An integrated flow cell, the flow cell comprising a semiconductor substrate, and a fluidic conduit having an at least partially transparent semiconductor oxide tubing, wherein the semiconductor oxide tubing is formed with the semiconductor substrate.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: July 3, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Karsten Kraizcek, Beno Mueller, Timothy Beerling
  • Patent number: 8212566
    Abstract: A sensor for sensing an angular position of an instrument relative to a static magnetic field includes a flexible beam, an electromagnetic device, and a measuring device. The beam at one end may be coupled to the instrument, and lies along a sensor axis when the beam is in a non -flexed state. The electromagnetic device is coupled to the beam and is configured for generating a magnetic sensor field aligned with the sensor axis. The measuring device communicates with the beam and is configured for measuring a property of the beam related to an amount of flexure of the beam. The sensor may be utilized to set the instrument at a desired angle prior to operating the instrument, and to determine whether the instrument has deviated from the desired angle during operation. The instrument may include a probe spinning module such as may be utilized in magnetic resonance experiments.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: July 3, 2012
    Assignee: Agilent Technologies, Inc.
    Inventor: Charles Glen Mullen
  • Patent number: 8210026
    Abstract: A detector in a gas chromatograph includes a detector inlet configured to receive a chromatographic column, the chromatographic column having a column entrance and a column exit, the column exit coupled to the detector inlet, a restriction integrated within the detector, the restriction located to receive an output of the chromatographic column, at least one pressure regulated gas source provided for normal gas chromatograph operation and arranged to provide at least one gas to a location between the integrated restriction and the column exit, and a backflush controller coupled to the pressure regulated gas source, the backflush controller configured to control a pressure differential between the column exit and the column entrance such that the at least one gas backflushes the chromatographic column when a pressure at the column exit exceeds a pressure at the column entrance.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: July 3, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Matthew S. Klee, Lawrence John Gajdos, Bruce Douglas Quimby
  • Patent number: 8213810
    Abstract: An optical receiver and a method of demodulating an optical signal. The method includes combining a received optical signal with a local oscillator signal to construct a complex signal indicative of an optical field of the modulated optical signal and processing the complex signal recursively under control of a Kalman filter that enforces a constraint. The receiver includes an optical hybrid that combines a received optical signal with a local oscillator signal, a detector that recovers components of a complex signal, a processor that receives these components, and instructions that cause the processor to process the components of the complex signal recursively under control of a Kalman filter that enforces a constraint to recover data.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: July 3, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Bogdan Szafraniec, Todd Steven Marshall
  • Patent number: 8213069
    Abstract: A lens stage for use in a scanning system is provided. In certain embodiments, the lens stage comprises: a) a support comprising a first rail and a second rail, in which the first rail and the second rail are mounted to the support in parallel; and b) a linearly moveable lens assembly comprising: i) a voice coil comprising a moving coil that moves in a direction parallel to the rails; ii) a lens; iii) a bracket that is attached to: a) the moving coil and b) the lens, and moveably engaged with the rails via a set of bearing cars; and iv) means to reduce force exerted on the set of bearing cars due to thermal expansion of the moving coil.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: July 3, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Lawrence J. DaQuino, Edwin de Groot, Donald J. Schremp
  • Publication number: 20120159761
    Abstract: A filter assembly includes a housing and filter elements. The housing includes internal chambers between first and second parallel outside surfaces, fluid inlet bores, and fluid outlet bores. Each internal chamber includes a filter element that partitions the internal chamber into an inlet chamber section and an outlet chamber section. The housing establishes a plurality of fluid flow channels from the inlet bores, through the inlet chamber sections, through the filter elements, through the outlet chamber sections and to the outlet bores, respectively. Each fluid channel includes a transverse fluid flow component in the inlet chamber section and the outlet chamber section. The filter assembly may be loaded into a filtering apparatus such that a plurality of separate fluid flow channels is established through the filter assembly.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: Agilent Technologies, Inc.
    Inventor: Jeremy Fetvedt
  • Publication number: 20120164026
    Abstract: A needle (300) for handling a fluid in an analysis system (10), the needle (300) comprising a needle body (302) made of a ceramic material and having a fluid conduit (304) extending between a fitting end (306) and a seat end (308), the fitting end (306) being connectable to a fitting (402) and the seat end (308) being insertable into a seat (602), wherein the needle body (302) is tapering, particularly conically tapering, towards the fitting end (306), a fixing body (310) arranged on the needle body (302) next to the fitting end (306) for exerting an axial force when the needle body (302) is connected to the fitting (402), and a slide-on element (312) to be slid over the needle body (302) so as to push the fixing body (310) towards the fitting end (306).
    Type: Application
    Filed: November 30, 2011
    Publication date: June 28, 2012
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Bernhard Dehmer, Joachim-Richard Wagner
  • Publication number: 20120160038
    Abstract: A solid phase extraction apparatus includes a sample adsorption assembly and a needle. The adsorption assembly includes a housing, a distal housing opening, and an adsorption bar disposed in the housing. The adsorption bar includes an outer surface coated with an adsorption material. The adsorption bar is located between the distal housing opening and a proximal housing opening. The outer surface is spaced from an inner housing surface, wherein the adsorption assembly includes an adsorption region between the inner housing surface and the outer surface. The adsorption assembly establishes a fluid flow path from the distal housing opening, through the adsorption region along a longitudinal direction, and to the proximal housing opening.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: Agilent Technologies, Inc.
    Inventors: Gregory J. Wells, John E. George
  • Publication number: 20120160754
    Abstract: A method of manufacturing a component (400) having a flow path (402), wherein the method comprises forming a high pressure resistant casing (102) with a cavity (202) therein, inserting a bioinert material (302) into the cavity (202) to thereby form a composite block (300), and further processing the composite block (300) for at least partially forming the flow path (402) defined by the component (400).
    Type: Application
    Filed: November 22, 2011
    Publication date: June 28, 2012
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventor: Stefan Falk-Jordan
  • Publication number: 20120153933
    Abstract: A system and method for determining the linearity of a device-under-test combine a first periodic signal and a second periodic signal to produce a combined signal, wherein the second periodic signal has at least one of a phase difference and a frequency difference with respect to the first periodic signal, and applying the combined signal to an input of the device-under-test. The linearity of the device-under-test is determined from an output signal of the device-under-test based on the at least one of the phase difference and frequency difference between the first periodic signal and the second periodic signal.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 21, 2012
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Kenneth H. Wong, Robert E. Shoulders, Joel P. Dunsmore, Thomas Reed, Erwin F. Siegel
  • Publication number: 20120153955
    Abstract: According to one aspect, a magnetic resonance imaging (MRI) scanner includes a short birdcage (e.g. millipede) distributed-capacitance radio-frequency (RF) coil formed from one or more patterned planar conductive foils. The transverse extent (e.g. diameter) of the coil is at least a factor of 3, for example about a factor of 10, larger than the longitudinal (z-axis) extent of the coil. Flux-return gaps may be provided between the sample measurement volume defined by the coil and RF shields adjacent to the sample measurement volume, to confine the RF magnetic field to the sample measurement volume. Exemplary coils described herein are particularly suited for very high-frequency MRI measurements.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 21, 2012
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventor: Wai Ha Wong