Patents Assigned to Analog Devices Global
  • Patent number: 9484136
    Abstract: A magnetic core is provided for an integrated circuit, the magnetic core comprising: a plurality of layers of magnetically functional material; a plurality of layers of a first insulating material; and at least one layer of an secondary insulating material; wherein layers of the first insulating material are interposed between layers of the magnetically functional material to form subsections of the magnetic core, and the at least one layer of second insulating material is interposed between adjacent subsections.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: November 1, 2016
    Assignee: Analog Devices Global
    Inventors: Michael Noel Morrissey, Jan Kubik, Shane Patrick Geary, Patrick Martin McGuinness, Catriona Marie O'Sullivan
  • Patent number: 9479865
    Abstract: A transducer amplification circuit may include a preamplifier circuit with a signal input receiving a transducer signal to provide an amplified transducer signal comprising audible frequency components and ultrasonic frequency components. The transducer amplification circuit may include a first sigma-delta modulator configured to sample and quantize the amplified transducer signal to generate a first digital transducer signal comprising a first quantization noise signal. The first sigma-delta modulator may include a first noise transfer function having a high pass response in at least a portion of an audible frequency range to push the quantization noise signal to ultrasonic frequencies. A second sigma-delta modulator is configured to sample and quantize the amplified transducer signal to generate a second digital transducer signal comprising a second quantization noise signal.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: October 25, 2016
    Assignee: Analog Devices Global
    Inventors: Khiem Quang Nguyen, Kim Spetzler Berthelsen, Robert Adams
  • Patent number: 9478359
    Abstract: A phase corrector for laser trimming a component, the phase corrector comprising: a first correction structure located to a first side of the component, the first correction structure comprising first and second correction regions at first and second distances from the component; and a second correction structure located to a second side the component, the second correction structure comprising third and fourth correction regions at third and fourth distances from the component.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: October 25, 2016
    Assignee: Analog Devices Global
    Inventors: Bernard Patrick Stenson, Paul Martin Lambkin, Colette J. Blaney, John Beatty
  • Patent number: 9467151
    Abstract: Provided herein are apparatus and methods for using tuning information to adaptively and dynamically modify the parameters of an RF signal chain. The tuning information from an oscillator core, having multiple oscillators, adaptively tunes parameters of system components within a signal chain. In this way the system components are tuned to operate within a band tailored to the signal and to the oscillator core. In addition, RF impedances can be matched and power added efficiency can be enhanced in an area efficient monolithic integrated circuit.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: October 11, 2016
    Assignee: Analog Devices Global
    Inventor: James Breslin
  • Patent number: 9460354
    Abstract: Objects are detected in real-time at full VGA 30 frame per second resolution. A preprocessor performs run-length encoding (RLE) and generates a summed area table (SAT) of an image. The RLE and SAT are used to identify candidate objects and to iteratively refine their boundaries. A histogram of gradients (HoG) and support vector machine (SVM) then reliably classify the object. The method may be part of an advanced driver assistance system (ADAS).
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: October 4, 2016
    Assignee: Analog Devices Global
    Inventors: Joseph Fernandez, Sreenath Kottekkode
  • Patent number: 9455731
    Abstract: A method and a digital-to-analog converter (DAC) circuit involve forming an analog signal using charge sharing operations. The DAC circuit includes a plurality of digital components with associated parasitic capacitances. The digital components are activated based on a digital input code, such that charge is shared among the parasitic capacitances to form a first analog signal proportional to the digital input code. The digital components can also be activated based on a complementary code to form a second analog signal. The first analog signal and the second analog signal can be used to form, as a final output of the DAC circuit, an analog signal that is linearly proportional to the digital input code.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: September 27, 2016
    Assignee: Analog Devices Global
    Inventors: Avinash Gutta, Michael Coln
  • Patent number: 9448579
    Abstract: Circuits and method for providing voltage reference circuits that include low drift over time and lower operating voltages are provided. Generally, it is desirable that a reference circuit provide an accurate and precise reference over time. The voltage reference circuits described can provide for good long term stability, operation at lower voltages than prior designs, consistent output voltage with reduced variability due to process changes and mismatches, low noise in the reference voltage, and other advantages.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 20, 2016
    Assignee: Analog Devices Global
    Inventor: Stefan Marinca
  • Patent number: 9444444
    Abstract: A driver may provide a transition of a switch between an on state and an off state in two stages. In the first stage, the voltage slew rate of the voltage at an output terminal of the switch may be controlled. In the second stage, the current gradient of the switch may be controlled. The transition between the first stage and the second stage may be made based on the value of the voltage at the output terminal of the switch.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: September 13, 2016
    Assignee: Analog Devices Global
    Inventor: Takashi Fujita
  • Patent number: 9438127
    Abstract: In certain example embodiments, a system is provided that includes a circuit. The system also includes a reverse current control module that provides an isolated power supply in order to protect one or more devices in a power chain during one or more testing activities having one or more requirements.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: September 6, 2016
    Assignee: Analog Devices Global
    Inventors: Yingyang Ou, Qingyi Huang, Renjian Xie, Ling Ren
  • Patent number: 9432043
    Abstract: It is known to perform sample rate conversion. A sample rate converter is arranged to receive digital data at an input sample rate Fs and to output data at an output sample rate Fo, where Fo=Fs/N, and N is decimation factor greater than 1. A problem can arise with sample rate converters when a user wishes to change the decimation rate. Generally a sample rate converter needs to discard the samples in its filter when the decimation rate is changed, and the filter output is unusable until the filter has refilled with values taken at the new decimation rate. The sample rate converter provided here does not suffer from this problem. The sample rate converter includes at least Q channels.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: August 30, 2016
    Assignee: Analog Devices Global
    Inventors: Anthony Evan O'Shaughnessy, Colin Lyden, Joseph Peter Canning
  • Patent number: 9431901
    Abstract: A charge pump cell, comprising: an input node; an output node; Q channels, where Q is an integer greater than one, and where at least two of the channels comprise: a capacitor; a unidirectional current flow device; an output diode; and a channel drive signal node; and wherein a first current flow node of the unidirectional current flow device is connected to a first node of the capacitor at a channel node, a second node of the capacitor is connected to the channel drive signal node, a second current flow node of the unidirectional current flow device is connected to the input node, and the output diode is connected between the channel node and the output node.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: August 30, 2016
    Assignee: Analog Devices Global
    Inventor: Barry P. Kinsella
  • Patent number: 9425816
    Abstract: Data converters convert signals in analog form to digital form or from digital form to analog form. Due to mismatches between devices that are intended to be identical (unary elements), some data converters outputs may have undesirable characteristics, such as non-linearities. Shuffling the inputs to the unary elements based on a pseudo-random sequence is a technique that can average out the mismatches over time. However, shuffling generally requires a complex switch matrix, and can potentially impact the speed of the converter. To address mismatches, a high speed technique for rotating comparator thresholds is implemented to effectively rotate an array of unary digital-to-analog converter elements. The technique is particularly advantageous for addressing mismatches in unary digital-to-analog converters used for reconstructing a quantized analog signal within delta-sigma analog-to-digital converter.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: August 23, 2016
    Assignee: Analog Devices Global
    Inventors: Wenhua W. Yang, Richard E. Schreier
  • Patent number: 9419597
    Abstract: Embodiments of the present invention eliminate the high bandwidth buffer from the analog chopper circuit. In some specific embodiments, the buffer is replace with a comparator-based loop that can be used to apply offset correction and achieve N-bit settling performance with sharp (up to 1 ns) rise and fall time with significantly lower power than with a buffer. Other specific embodiments include overcharging circuitry in combination with the comparator-based loop or in lieu of the comparator-based loop. Still other specific embodiments include an array of capacitors in place of the single large capacitor Clarge and use decoding/switching circuitry to selectively couple one of the capacitors into the circuit based on the DAC input code. Importantly, exemplary embodiments result in total power dissipation around the theoretical limit needed to charge the capacitor to the DAC output voltage.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: August 16, 2016
    Assignee: Analog Devices Global
    Inventors: Achal Venkatesh, Abhinav Kumar Dikshit
  • Patent number: 9411003
    Abstract: The present invention relates to current measurement apparatus. The current measurement apparatus comprises first and second measurement devices with each of the first and second measurement devices being operative to measure current in a respective one of a live conductor and a neutral conductor substantially simultaneously. The current measurement apparatus is operative to make plural different determinations in dependence on the substantially simultaneous current measurements.
    Type: Grant
    Filed: November 22, 2012
    Date of Patent: August 9, 2016
    Assignee: Analog Devices Global
    Inventors: Seyed Amir Ali Danesh, Jonathan Ephraim David Hurwitz
  • Patent number: 9411542
    Abstract: In one example, there is disclosed herein a processor configured for interruptible atomic exclusive memory operations. For example, a load exclusive (LDEX) may be followed by a store exclusive (STREX), with the two together forming an atom. To facilitate timely handling of interrupts, the STREX operation is split into two parts. The STREX_INIT is not interruptible but has a determinate execution time because it takes a fixed number of clock cycles. The STREX_INIT sends the value out to the memory bus. It is followed by a STREX_SYNC operation that polls a flag for whether a return value is available. STREX_SYNC is interruptible, and methods are disclosed for determining whether, upon return from an interrupt, atomicity of the operation has been broken. If atomicity is broken, the instruction fails, while if atomicity is preserved, the instruction completes.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: August 9, 2016
    Assignee: Analog Devices Global
    Inventors: Andrew J. Higham, Gregory M. Yukna
  • Patent number: 9407283
    Abstract: A delta-sigma modulator is configured to sense and convert an electromagnetic field into a digital signal. An exemplary delta-sigma modulator includes a sensor component, such as an LC resonator, that is configured to sense the electromagnetic field and generate an input analog signal, where the delta-sigma modulator is configured to convert the input analog signal to the digital signal. Delta-sigma modulator can include an analog-to-digital converter coupled to the sensor component that receives and converts the input analog signal to the digital signal. Delta-sigma modulator can further include a digital-to-analog converter (DAC) coupled to the resonator and the ADC, the DAC configured to receive the digital signal from the ADC and generate a feedback analog signal.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: August 2, 2016
    Assignee: Analog Devices Global
    Inventors: Trevor Clifford Caldwell, Richard E. Schreier
  • Patent number: 9391578
    Abstract: An LIF receiver includes a receiver path comprising: a mixer for mixing a received RF signal with a local oscillator signal to provide an IF signal at a lower frequency than the received RF signal, a bandpass filter for filtering the IF signal, a PGA for amplifying the filtered IF signal, an ADC for converting the amplified filtered IF signal to a digital signal, a converter for converting the digital signal to a baseband digital signal, and an AGC for setting a gain of the PGA in response to a magnitude of the received RF signal. A programmable DC signal source injects a programmed DC offset signal into the amplified filtered IF signal converted by the ADC, and a signal sensor, operatively connected to the receiver path after the PGA, determines a polarity of PGA signal output for a programmed DC offset signal. A controller determines a programmed DC offset signal minimizing a magnitude of the baseband signal in the absence of a received RF signal for at least one gain setting of the PGA.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: July 12, 2016
    Assignee: Analog Devices Global
    Inventors: Muhammad Kalimuddin Khan, Michael J. Deeney, Niall Kevin Kearney, Kenneth J. Mulvaney, Shane A. O'Mahony
  • Patent number: 9391628
    Abstract: An input stage to an analog to digital converter (ADC) includes at least one sampling capacitor (SC) for sampling an input signal in acquire phases, a capacitive gain amplifier (CGA) for providing the input signal to the SC, and bandwidth control means. The bandwidth control means is configured to ensure that the SC has a first bandwidth during a first part of an acquire phase and has a second bandwidth during a subsequent, second, part of said acquire phase, the second bandwidth being smaller than the first. In this manner, first, the input signal is sampled at a higher, first, bandwidth allowing to take advantage of using a high-bandwidth CGA to minimize settling error on the SC, and, next, during a second part of the same acquire phase, the input signal is sampled at a lower, second, bandwidth advantageously decreasing noise resulting from the use of a high-bandwidth CGA.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 12, 2016
    Assignee: Analog Devices Global
    Inventors: Colin G. Lyden, Pasquale Delizia, Sanjay Rajasekhar, Yogesh Jayarman Sharma, Arthur J. Kalb, Marvin L. Shu, Gerard Mora-Puchalt, Roberto S. Maurino
  • Patent number: 9391519
    Abstract: A device to detect an electrical signal is provided. The device includes sensing, output, and pull-down nodes. The device includes a pull-down circuit having a native metal-oxide-semiconductor field-effect transistor (MOSFET) to pull down the output node to approximately a voltage of the pull-down node. The device includes a switch circuit having a junction field-effect transistor (JFET). The JFET turns on the pull-down circuit in response to a voltage of the sensing node being less than a first threshold. The JFET also turns off the pull-down circuit in response to the voltage of the sensing node being greater than the first threshold.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: July 12, 2016
    Assignee: Analog Devices Global
    Inventors: Danzhu Lu, Xiaohan Gong, Bin Shao
  • Patent number: 9384168
    Abstract: In at least one example embodiment, a microprocessor circuit is provided that includes a microprocessor core coupled to a data memory via a data memory bus comprising a predetermined integer number of data wires (J); the single-ported data memory configured for storage of vector input elements of an N element vector in a predetermined vector element order and storage of matrix input elements of an M×N matrix comprising M columns of matrix input elements and N rows of matrix input elements; a vector matrix product accelerator comprising a datapath configured for multiplying the N element vector and the matrix to compute an M element result vector, the vector matrix product accelerator comprising: an input/output port interfacing the data memory bus to the vector matrix product accelerator; a plurality of vector input registers for storage respective input vector elements received through the input/output port.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: July 5, 2016
    Assignee: Analog Devices Global
    Inventor: Mikael Mortensen