Patents Assigned to Analog Devices, Inc.
  • Publication number: 20220209946
    Abstract: Described herein are techniques of remotely performing key revocation on a device that cannot communicate outside of a local network of the device. The techniques involve including key revocation instructions in software update instructions that are sent to the device. The device may verify the software update instructions using one or more keys to determine whether they are safe for execution on the device. For example, the device may verify that the software update instructions have been sent by a trusted software provider. The device may execute the key revocation instructions included in the software update instruction to revoke use of a key of the key(s), and initiate use of a new key in place of the revoked key.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 30, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Jonathan Noah Simon, Tze Lei Poo
  • Publication number: 20220209721
    Abstract: Various examples are directed to a frequency-compensated amplifier circuit comprising a first multi-stage amplifier comprising a first amplifier input node, a first amplifier output node, and a first amplifier intermediate node. A first feedback path between the first amplifier input node and the first amplifier output node comprises a feedback resistance. A second feedback path between the first amplifier output node and the first amplifier intermediate node comprises a first capacitor and a portion of the feedback resistance. A first switch circuit may be electrically coupled to the first capacitor and to the feedback resistance. The first switch circuit may have a first state in which the first capacitor is coupled to a first tap point of the feedback resistance and the portion of the feedback resistance has a first value.
    Type: Application
    Filed: February 11, 2021
    Publication date: June 30, 2022
    Applicant: Analog Devices, Inc.
    Inventors: David James Plourde, Quan Wan
  • Publication number: 20220206072
    Abstract: One embodiment is a method for estimating an internal temperature of a battery, the method comprising obtaining multiple terminal impedance measurements, wherein each of the terminal impedance measurements is taken at a different one of a plurality of frequencies; determining model parameters for a multivariable polynomial regression model; and applying the multivariable polynomial regression model to the multiple terminal impedance measurements to estimate the internal temperature of the battery.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 30, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Frank YAUL, Sunrita PODDAR, Hemtej GULLAPALLI, Omer TANOVIC
  • Patent number: 11374803
    Abstract: Quadrature error correction (QEC) for radio transceivers are provided herein. In certain embodiments, a transceiver includes an in-phase (I) signal path including a first controllable amplifier coupled to a first data converter, and a quadrature-phase (Q) signal path including a second controllable amplifier coupled to a second data converter. The transceiver further includes a QEC circuit operable to correct for a quadrature error between the I signal path and the Q signal path by adjusting a gain of the first controllable amplifier and/or a gain of the second controllable amplifier.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: June 28, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Omar A S Abdel Fattah, Christoph M. Steinbrecher
  • Publication number: 20220196542
    Abstract: A structural electronics wireless sensor node is provided that includes layers of electronic components fabricated from patterned nanostructures embedded in an electrically conductive matrix. In some aspects, the structural electronics wireless sensor node includes a plurality of nanostructure layers that each form individual electronic components of the structural electronics wireless sensor node. In certain embodiments, the structural electronics wireless sensor node includes electronic components such as a resistor, a inductor, a capacitor, and/or an antenna.
    Type: Application
    Filed: March 9, 2022
    Publication date: June 23, 2022
    Applicants: Analog Devices, Inc., Massachusetts Institute of Technology
    Inventors: Brian L. Wardle, Yosef Stein, Estelle Cohen, Michael Murray
  • Publication number: 20220200351
    Abstract: A contactless charging drawer for smart garments using magnetic coupling links. A frame with a primary coil creates a magnetic field which couples with a secondary coil disposed a drawer. Smart garments, or any device, can then be safely charged in the drawer. The combination provides for a wireless power charging environment while adding an extra degree of freedom in impedance transformation without the need for electrical contacts to the drawer.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 23, 2022
    Applicants: Analog Devices, Inc., UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Patrick RIEHL, Chin-Wei CHANG
  • Publication number: 20220196699
    Abstract: A microelectromechanical systems (MEMS) accelerometer is provided, comprising a substrate disposed in a plane defined by a first axis and a second axis perpendicular to the first axis; a first proof mass and a second proof mass coupled to the substrate and configured to translate in opposite directions of each other along a third axis perpendicular to the first and second axes; and at least one lever coupling the first proof mass to the second proof mass, wherein, the MEMS accelerometer is configured to detect acceleration along the third axis via detection of translation of the first and second proof masses along the third axis; and the MEMS accelerometer exhibits symmetry about the first and second axes.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 23, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Kemiao Jia, Xin Zhang, Michael Judy
  • Patent number: 11366174
    Abstract: A device to predict failure in a power supply includes a converter circuit configured to generate a regulated output voltage. The device additionally includes a first feedback circuit to generate a first feedback voltage proportional to the regulated output voltage and a second feedback circuit to generate a second feedback voltage based on the regulated output voltage. The second feedback circuit includes a voltage sampling circuit to detect the regulated output voltage, a correction circuit to generate a correction signal responsive to a voltage difference between the regulated output voltage and a specified output voltage, a reference circuit to obtain a specified correction signal to apply to the power supply, a comparator circuit to determine whether a difference between the generated correction signal and the specified correction signal exceeds a threshold signal value, and an alerting circuit to generate an alert signal responsive to the determination.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: June 21, 2022
    Assignee: Analog Devices, Inc.
    Inventor: Navdeep Singh Dhanjal
  • Publication number: 20220189917
    Abstract: One embodiment is a microelectronic assembly including an assembly support structure; a first die including a pair of hot via comprising through-substrate-via (TSVs) extending through the first die between first and second sides thereof and a plurality of ground vias surrounding the pair of hot vias and extending through the first die between the first and second sides thereof. The first die further includes a pair of signal interconnect structures electrically connected to the pair of hot vias disposed on the second side of the first die. The assembly further includes a second die between the assembly support structure and the first die the pair of signal interconnect structures disposed on the first side thereof. The first die is connected to the second die via a signal die-to-die (DTD) interconnect structure including the signal interconnect structures of the first and second dies.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 16, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Ed BALBONI, Ozan GURBUZ, William B. BECKWITH, Paul Harlan REKEMEYER
  • Patent number: 11362203
    Abstract: Electrical overstress protection for electronic systems subject to electromagnetic compatibility fault conditions are provided herein. In certain implementations, a stacked thyristor protection structure with a high holding voltage includes a protection device having a trigger voltage and a holding voltage. A trigger voltage of the stacked thyristor protection structure is substantially equal to the trigger voltage of the protection device. The stacked thyristor protection structure further includes at least one resistive thyristor electrically connected to the protection device and operable to increase a holding voltage of the stacked thyristor protection structure relative to the holding voltage of the protection device. The at least one resistive thyristor comprising a PNP bipolar transistor and a NPN bipolar transistor that are cross-coupled, and a conductor connecting a collector of the PNP bipolar transistor to a collector of the NPN bipolar transistor.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: June 14, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Javier A. Salcedo, Linfeng He
  • Patent number: 11356072
    Abstract: Customizable tunable filters are provided herein. In certain implementations, a tunable filter including: a first filter bank including a plurality of high-pass filters each having a different cutoff frequency, and a second filter bank including a plurality of low-pass filters each having a different cutoff frequency. The tunable filter further includes a first pair of switches configured to select a first filter chosen from the first filter bank, and a second pair of switches configured to select a second filter chosen from the second filter bank. The tunable filter operates with a first cutoff frequency of the first filter and with a second cutoff frequency of the second filter.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: June 7, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Fatih Kocer, Ekrem Oran, Christopher O'Neill, Kasey Chatzopoulos
  • Patent number: 11355598
    Abstract: A semiconductor device having a back-side field plate includes a buffer layer that includes a first compound semiconductor material, where the buffer layer is epitaxial to a crystalline substrate. The semiconductor device also includes field plate layer that is disposed on a surface of the buffer layer. The semiconductor device further includes a first channel layer disposed over the field plate layer, where the first channel layer includes the first compound semiconductor material. The semiconductor device further includes a region comprising a two-dimensional electron gas, where the two-dimensional electron gas is formed at an interface between the first channel layer and a second channel layer. The semiconductor device additionally includes a back-side field plate that is formed by a region of the field plate layer and is electrically isolated from other regions of the field plate layer.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: June 7, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Puneet Srivastava, James G. Fiorenza, Daniel Piedra
  • Patent number: 11350537
    Abstract: Various embodiments relate to an electrical feedthrough assembly an elongate conductor and a collar at least partially surrounding the elongate conductor along a portion of a length of the elongate conductor. The collar can be composed of a material having a thermal conductivity of at least 170 W/(m-K). A shell can be disposed around the collar. At one or more operating frequencies, at least a portion of a length of the electrical feedthrough assembly can be selected to provide at least one quarter wave transform.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: May 31, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Adam T. Winter, Edward James Burg
  • Publication number: 20220162059
    Abstract: Microelectromechanical system (MEMS) inertial sensors exhibiting reduced parasitic capacitance are described. The reduction in the parasitic capacitance may be achieved by forming localized regions of thick dielectric material. These localized regions may be formed inside trenches. Formation of trenches enables an increase in the vertical separation between a sense capacitor and the substrate, thereby reducing the parasitic capacitance in this region. The stationary electrode of the sense capacitor may be placed between the proof mass and the trench. The trench may be filled with a dielectric material. Part of the trench may be filled with air, in some circumstances, thereby further reducing the parasitic capacitance. These MEMS inertial sensors may serve, among other types of inertial sensors, as accelerometers and/or gyroscopes. Fabrication of these trenches may involve lateral oxidation, whereby columns of semiconductor material are oxidized.
    Type: Application
    Filed: February 9, 2022
    Publication date: May 26, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Charles Blackmer, Jeffrey A. Gregory, Nikolay Pokrovskiy, Bradley C. Kaanta
  • Patent number: 11340295
    Abstract: A force-sense system for providing signals to, or receiving signals from, a device under test (DUT) at a first DUT node. The system can include an interface coupling first and second portions of a first force-sense measurement device, such as a parametric measurement unit. The first and second portions of the first force-sense measurement device can be provided using respective different integrated circuits, such as can comprise different semiconductor dies of different die types. In a first test mode, the interface can be configured to communicate a first DUT force signal from the first portion to the second portion of the first force-sense measurement device, and in a second test mode the interface can be configured to communicate DUT sense information, received from the DUT at the first DUT node, from the second portion to the first portion of the first force-sense measurement device.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: May 24, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Amit Kumar Singh, Christopher C. McQuilkin, Brian Carey
  • Patent number: 11342930
    Abstract: A dither capacitor, separate from the capacitor sampling the input signal, can be used to inject the additive dither in the switched-capacitor network of the track and hold circuit. This implementation can be referred to as a split-capacitor dither injection. The dither capacitor can be connected to a summing node of the switched-capacitor network. Using a separate capacitor allows the dither to be isolated from the capacitor that is sampling the input signal and avoids kick-back errors.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: May 24, 2022
    Assignee: ANALOG DEVICES, INC.
    Inventor: Ahmed Mohamed Abdelatty Ali
  • Patent number: 11342323
    Abstract: A semiconductor die with high-voltage tolerant electrical overstress circuit architecture is disclosed. One embodiment of the semiconductor die includes a signal pad, a ground pad, a core circuit electrically connected to the signal pad, and a stacked thyristor protection device. The stacked thyristor includes a first thyristor and a resistive thyristor electrically connected in a stack between the signal pad and the ground pad, which enhances the holding voltage of the circuit relatively to an implementation with only the thyristor. Further, the resistive thyristor includes a PNP bipolar transistor and a NPN bipolar transistor that are cross-coupled, and an electrical connection between a collector of the PNP bipolar transistor and a collector of the NPN bipolar transistor. This allows the resistive thyristor to exhibit both thyristor characteristics and resistive characteristics based on a level of current flow.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: May 24, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Javier A. Salcedo, Linfeng He
  • Publication number: 20220156219
    Abstract: Disclosed herein are two-wire communication systems and applications thereof. In some embodiments, a slave node transceiver for low latency communication may include upstream transceiver circuitry to receive a first signal transmitted over a two-wire bus from an upstream device and to provide a second signal over the two-wire bus to the upstream device; downstream transceiver circuitry to provide a third signal downstream over the two-wire bus toward a downstream device and to receive a fourth signal over the two-wire bus from the downstream device; and clock circuitry to generate a clock signal at the slave node transceiver based on a preamble of a synchronization control frame in the first signal, wherein timing of the receipt and provision of signals over the two-wire bus by the node transceiver is based on the clock signal.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Martin KESSLER, Miguel A. CHAVEZ, Lewis F. LAHR, William HOOPER, Robert Adams, Peter SEALEY
  • Publication number: 20220159118
    Abstract: Apparatus and methods are disclosed related to managing characteristics of a mobile device based upon capacitive detection of materials proximate the mobile device, a capacitive gesture system that can allow the same gestures be used in arbitrary locations within range of a mobile device. One such method includes receiving a first capacitive sensor measurement with a first capacitive sensor of the mobile device. The method further includes determining a value indicative of a material adjacent to the mobile device based on a correspondence between the first capacitive sensor measurement and stored values corresponding to different materials. The method further includes sending instructions to adjust a characteristic of the mobile device based on the determined value indicative of the material adjacent to the mobile device. In certain examples, gesture sensing can be performed using capacitive measurements from the capacitive sensors.
    Type: Application
    Filed: December 17, 2021
    Publication date: May 19, 2022
    Applicant: Analog Devices, Inc.
    Inventor: Isaac Chase NOVET
  • Publication number: 20220155336
    Abstract: Angular accelerometers are described, as are systems employing such accelerometers. The angular accelerometers may include a proof mass and rotational acceleration detection beams directed toward the center of the proof mass. The angular accelerometers may include sensing capabilities for angular acceleration about three orthogonal axes. The sensing regions for angular acceleration about one of the three axes may be positioned radially closer to the center of the proof mass than the sensing regions for angular acceleration about the other two axes. The proof mass may be connected to the substrate though one or more anchors.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Xin Zhang, Jianglong Zhang, Alan O'Donnell