Patents Assigned to Applied Material
-
Patent number: 11397289Abstract: Embodiments described herein relate to methods of forming gratings with different slant angles on a substrate and forming gratings with different slant angles on successive substrates using angled etch systems. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material. The substrates are rotated about an axis of the platen resulting in rotation angles ? between the ion beam and a surface normal of the gratings. The gratings have slant angles ?? relative to the surface normal of the substrates. The rotation angles ? selected by an equation ?=cos?1(tan(??)/tan(?)).Type: GrantFiled: April 17, 2019Date of Patent: July 26, 2022Assignee: Applied Materials, Inc.Inventors: Rutger Meyer Timmerman Thijssen, Morgan Evans, Joseph C. Olson
-
Patent number: 11396699Abstract: Embodiments described herein generally relate to methods for controlling a processing system. Particularly, subfab components of the processing system may be controlled based on the flow of materials into the processing system. In some embodiments, the flow of an inert gas used to dilute the effluent gases may be controlled in accordance with the flow of one or more precursor gases. Thus, the cost of running the processing system is reduced while mitigating critical EHS concerns.Type: GrantFiled: August 19, 2019Date of Patent: July 26, 2022Assignee: Applied Materials, Inc.Inventor: Andreas Neuber
-
Patent number: 11398388Abstract: Exemplary methods of etching gallium oxide from a semiconductor substrate may include selectively etching gallium oxide relative to gallium nitride. The method may include flowing a reagent in a substrate processing region housing the semiconductor substrate. The reagent may include at least one of chloride and bromide. The method may further include contacting an exposed region of gallium oxide with the at least one of chloride and bromide from the reagent to form a gallium-containing gas. The gallium-containing gas may be removed by purging the substrate processing region with an inert gas. The method includes recessing a surface of the gallium oxide. The method may include repeated cycles to achieve a desired depth.Type: GrantFiled: September 8, 2020Date of Patent: July 26, 2022Assignee: Applied Materials, Inc.Inventors: Feng Q. Liu, Lisa J. Enman, Lakmal C. Kalutarage, Mark J. Saly
-
Patent number: 11397384Abstract: Embodiments of the present disclosure are related to systems and methods for autofocusing an imaging apparatus in real-time during substrate scanning to pattern a substrate that includes a photoresist formed over one or more patterned materials. Displays of varying sizes can be fabricated using digital photolithography systems. The digital photolithography systems discussed herein, which may be referred to as imaging systems, use one or more exposure sources, including solid state emitter devices, for operations including patterning photoresists. Signal classifiers are used to perform shape and pattern recognition to determine whether signals received during substrate scanning are from a top photoresist surface or from sub-surface layers. One or more parameters of the imaging apparatus can be adjusted or maintained based on the signal analysis.Type: GrantFiled: December 4, 2020Date of Patent: July 26, 2022Assignee: Applied Materials, Inc.Inventor: Rashid M. Sallak
-
Patent number: 11398369Abstract: An RF plasma generator configured to ignite and maintain a plasma from one or more processing gases is disclosed. A switch mode power supply is configured to convert a DC voltage from a DC power source to an RF voltage. A resonance circuit is configured to deliver an amount of power to an ignited plasma from the switch mode power supply. A plasma controller is configured to operate the power supply to apply an RF voltage corresponding to the amount of power to the one or more processing gases through the resonance circuit. The RF voltage increases in amplitude and decreases in frequency until the one or more processing gasses are ignited into a plasma. Responsive to detecting ignition of the plasma, the plasma controller is further configured to continuously adjust the frequency of the switch mode power supply to deliver the amount of power to the ignited plasma. The amount of power is a substantially constant amount of power.Type: GrantFiled: June 25, 2019Date of Patent: July 26, 2022Assignee: Applied Materials, Inc.Inventors: Rongping Wang, Siamak Salimian, Tom K. Cho
-
Publication number: 20220230874Abstract: Chalcogen silane precursors are described. Methods for depositing a silicon nitride (SixNy) film on a substrate are described. The substrate is exposed to the chalcogen silane and a reactant to deposit the silicon nitride (SixNy) film. The exposures can be sequential or simultaneous. The chalcogen silane may be substantially free of halogen. The chalcogen may be selected from the group consisting of sulfur (S), selenium (Se), and tellurium (Te).Type: ApplicationFiled: January 18, 2021Publication date: July 21, 2022Applicants: Applied Materials, Inc., National University of SingaporeInventors: Chandan Kr Barik, Michael Haverty, Muthukumar Kaliappan, Cong Trinh, Bhaskar Jyoti Bhuyan, John Sudijono, Anil Kumar Tummanapelli, Richard Ming Wah Wong, Yingqian Chen
-
Publication number: 20220231137Abstract: A contact stack of a semiconductor device comprises: a source/drain region; a metal silicide layer above the source/drain region; a metal cap layer directly on the metal silicide layer; and a conductor on the metal cap layer. A method comprises: depositing a metal silicide layer in a feature of a substrate; in the absence of an air break after the depositing of the metal silicide layer, preparing a metal cap layer directly on the metal silicide layer; and depositing a conductor on the metal cap layer.Type: ApplicationFiled: January 19, 2021Publication date: July 21, 2022Applicant: Applied Materials, Inc.Inventors: Bencherki Mebarki, Joung Joo Lee, Wenting Hou, Takashi Kuratomi, Avgerinos V. Gelatos, Jianxin Lei, Liqi Wu, Raymond Hoiman Hung, Tae Hong Ha, Xianmin Tang
-
Publication number: 20220230877Abstract: Methods for depositing a silicon germanium tin boron (SiGeSn:B) film on a substrate are described. The method comprises exposing a substrate to a precursor mixture comprising a boron precursor, a silicon precursor, a germanium precursor, and a tin precursor to form a boron silicon germanium tin (SiGeSn:B) film on the substrate.Type: ApplicationFiled: January 17, 2022Publication date: July 21, 2022Applicant: Applied Materials, Inc.Inventors: Chen-Ying Wu, Yi-Chiau Huang
-
Publication number: 20220229819Abstract: Exemplary embodiments provide methods, mediums, and systems for generating a library of oligonucleotides for fluorescence in-situ hybridization transcriptomics probes. The illustrative techniques include several improvements, which may be utilized separately or together. These improvements include automatically iterating over a particular group of probe building actions while excluding other actions from the automatic iterations. This serves to reduce the amount of processing and memory resources required while significantly speeding up the process of building the library. Other improvements described simplify the input of genes of interest to be used to construct the probes and provide quality control capabilities. The described solution may be implemented in non-script-based instructions, which simplifies the input procedure, allows for the separation of data management and processing capabilities, and reduces the need for expert users to build the library.Type: ApplicationFiled: July 15, 2021Publication date: July 21, 2022Applicant: Applied Materials, Inc.Inventor: Bongjun Son
-
Patent number: 11393678Abstract: Methods for deposition of high-hardness low-? dielectric films are described. More particularly, a method of processing a substrate is provided. The method includes flowing a precursor-containing gas mixture into a processing volume of a processing chamber having a substrate, the precursor having the general formula (I) wherein R1, R2, R3, R4, R5, R6, R7, and R8 are independently selected from hydrogen (H), alkyl, alkoxy, vinyl, silane, amine, or halide; maintaining the substrate at a pressure in a range of about 0.1 mTorr and about 10 Torr and at a temperature in a range of about 200° C. to about 500° C.; and generating a plasma at a substrate level to deposit a dielectric film on the substrate.Type: GrantFiled: August 10, 2020Date of Patent: July 19, 2022Assignee: Applied Materials, Inc.Inventors: William J. Durand, Mark Saly, Lakmal C. Kalutarage, Kang Sub Yim, Shaunak Mukherjee
-
Patent number: 11390940Abstract: A physical vapor deposition chamber comprising a rotating substrate support having a rotational axis, a first cathode having a radial center positioned off-center from a rotational axis of the substrate support is disclosed. A process controller comprising one or more process configurations selected from one or more of a first configuration to determine a rotation speed (v) for a substrate support to complete a whole number of rotations (n) around the rotational axis of the substrate support in a process window time (t) to form a layer of a first material on a substrate, or a second configuration to rotate the substrate support at the rotation speed (v).Type: GrantFiled: April 16, 2020Date of Patent: July 19, 2022Assignee: Applied Materials, Inc.Inventors: Wen Xiao, Vibhu Jindal, Sanjay Bhat
-
Patent number: 11390947Abstract: A method of forming a fluorinated metal film is provided. The method includes positioning an object in an atomic layer deposition (ALD) chamber having a processing region, depositing a metal-oxide containing layer on an object using an atomic layer deposition (ALD) process, depositing a metal-fluorine layer on the metal-oxide containing layer using an activated fluorination process, and repeating the depositing the metal-oxide containing layer and the depositing the metal-oxide containing layer until a fluorinated metal film with a predetermined film thickness is formed. The activated fluorination process includes introducing a first flow of a fluorine precursor (FP) to the processing region. The FP includes at least one organofluorine reagent or at least one fluorinated gas.Type: GrantFiled: February 25, 2020Date of Patent: July 19, 2022Assignee: Applied Materials, Inc.Inventors: Nitin Deepak, Suresh Chand Seth, Prerna Sonthalia Goradia, Geetika Bajaj, Darshan Thakare, Jennifer Y. Sun, Gayatri Natu
-
Patent number: 11393661Abstract: Embodiments described herein include a processing tool that comprises a processing chamber, a chuck for supporting a substrate in the processing chamber, a dielectric window forming a portion of the processing chamber, and a modular high-frequency emission source. In an embodiment, the modular high-frequency emission source comprises a plurality of high-frequency emission modules. In an embodiment, each high-frequency emission module comprises, an oscillator module, amplification module, and an applicator. In an embodiment, the amplification module is coupled to the oscillator module. In an embodiment, the applicator is coupled to the amplification module. In an embodiment, the applicator is positioned proximate to the dielectric window.Type: GrantFiled: April 20, 2018Date of Patent: July 19, 2022Assignee: Applied Materials, Inc.Inventors: Hanh Nguyen, Thai Cheng Chua, Philip Allan Kraus
-
Patent number: 11393710Abstract: Apparatuses including a height-adjustable edge ring, and methods for use thereof are described herein. In one example, a substrate support assembly includes a height-adjustable edge ring, and the substrate support assembly is located within a process chamber. The substrate support assembly includes an electrostatic chuck, an edge ring positioned on a portion of the electrostatic chuck, and one or more actuators to adjust the height of the edge ring via one or more push pins. The height-adjustable edge ring can be used to compensate for erosion of the edge ring over time. In addition, the height-adjustable edge ring can be removed from the process chamber via a slit valve opening without venting and opening the process chamber. The height-adjustable edge ring can be tilted by the one or more actuators in order to improve azimuthal uniformity at the edge of the substrate.Type: GrantFiled: January 6, 2017Date of Patent: July 19, 2022Assignee: Applied Materials, Inc.Inventors: Michael R. Rice, Yogananda Sarode Vishwanath, Sunil Srinivasan, Rajinder Dhindsa, Steven E. Babayan, Olivier Luere, Denis M. Koosau, Imad Yousif
-
Patent number: 11390638Abstract: Molybdenum(VI) coordination complexes are described. Methods for depositing molybdenum-containing films on a substrate are described. The substrate is exposed to a molybdenum precursor and a reactant to form the molybdenum-containing film (e.g., elemental molybdenum, molybdenum oxide, molybdenum carbide, molybdenum silicide, molybdenum nitride). The exposures can be sequential or simultaneous.Type: GrantFiled: January 12, 2021Date of Patent: July 19, 2022Assignee: Applied Materials, Inc.Inventors: Andrea Leoncini, Paul Mehlmann, Nemanja Dordevic, Han Vinh Huynh, Doreen Wei Ying Yong, Mark Saly, Bhaskar Jyoti Bhuyan, Feng Q. Liu
-
Publication number: 20220220140Abstract: Molybdenum(0) coordination complexes comprising an arene ligand and one or more neutral ligands which coordinate to the metal center by carbon, nitrogen or phosphorous are described. Methods for depositing molybdenum-containing films on a substrate are described. The substrate is exposed to a molybdenum precursor and a reactant to form the molybdenum-containing film (e.g., elemental molybdenum, molybdenum oxide, molybdenum carbide, molybdenum silicide, molybdenum nitride). The exposures can be sequential or simultaneous.Type: ApplicationFiled: January 12, 2021Publication date: July 14, 2022Applicants: Applied Materials, Inc., National University of SingaporeInventors: Andrea Leoncini, Paul Mehlmann, Nemanja Dordevic, Han Vinh Huynh, Doreen Wei Ying Yong
-
Publication number: 20220220137Abstract: Molybdenum(VI) coordination complexes are described. Methods for depositing molybdenum-containing films on a substrate are described. The substrate is exposed to a molybdenum precursor and a reactant to form the molybdenum-containing film (e.g., elemental molybdenum, molybdenum oxide, molybdenum carbide, molybdenum silicide, molybdenum nitride). The exposures can be sequential or simultaneous.Type: ApplicationFiled: January 12, 2021Publication date: July 14, 2022Applicants: Applied Materials, Inc., National University of SingaporeInventors: Andrea Leoncini, Paul Mehlmann, Nemanja Dordevic, Han Vinh Huynh, Doreen Wei Ying Yong, Mark Saly, Bhaskar Jyoti Bhuyan, Feng Q. Liu
-
Publication number: 20220223410Abstract: A method of depositing a silicon-containing material is disclosed. Some embodiments of the disclosure provide films which fill narrow CD features without a seam or void. Some embodiments of the disclosure provide films which form conformally on features with wider CD. Embodiments of the disclosure also provide superior quality films with low roughness, low defects and advantageously low deposition rates.Type: ApplicationFiled: November 9, 2021Publication date: July 14, 2022Applicant: Applied Materials, Inc.Inventors: Jung Chan Lee, Praket P. Jha, Jingmei Liang, Jinrui Guo, Wenhui Li
-
Publication number: 20220221786Abstract: A multilayer stack in the form of a Bragg reflector comprising a graded interfacial layer and a method of manufacturing are disclosed. The graded interfacial layer eliminates the formation of low-reflectivity interfaces in a multilayer stack and reduces roughness of interfaces in a multilayer stack.Type: ApplicationFiled: March 30, 2022Publication date: July 14, 2022Applicant: Applied Materials, Inc.Inventors: Wen Xiao, Vibhu Jindal, Weimin Li, Shuwei Liu
-
Publication number: 20220223409Abstract: Exemplary methods of semiconductor processing may include providing a boron-and-carbon-and-nitrogen-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed within the processing region of the semiconductor processing chamber. The methods may include generating a capacitively-coupled plasma of the boron-and-carbon-and-nitrogen-containing precursor. The methods may include forming a boron-and-carbon-and-nitrogen-containing layer on the substrate. The boron-and-carbon-and-nitrogen-containing layer may be characterized by a dielectric constant below or about 3.5.Type: ApplicationFiled: January 8, 2021Publication date: July 14, 2022Applicant: Applied Materials, Inc.Inventors: Zeqing Shen, Bo Qi, Abhijit Basu Mallick, Nitin K. Ingle