Patents Assigned to Applied Material
  • Publication number: 20070154210
    Abstract: A method of dispensing a photolithography chemical onto a substrate positioned in a track lithography tool. The method includes determining a target volume of the photolithography chemical for a photolithography process and calculating a pump offset. The pump offset is a second order polynomial function of the target volume. The method also includes providing a dispense value dependent on the pump offset to a dispense pump adapted to deliver the photolithography chemical to the substrate. The method further includes providing a control signal to the dispense pump to initiate delivery of the photolithography chemical to the substrate.
    Type: Application
    Filed: January 4, 2006
    Publication date: July 5, 2007
    Applicant: Applied Materials, Inc.
    Inventor: Y. Lin
  • Publication number: 20070151841
    Abstract: A magnetron scanning and support mechanism in which the magnetron is partially supported from an overhead scanning mechanism through multiple springs coupled to different horizontal locations on the magnetron and partially supported from below at multiple locations on the target, on which it slides or rolls. In one embodiment, the yoke plate is continuous and uniform. In another embodiment, the magnetron's magnetic yoke is divided into two flexible yokes, for example, of complementary serpentine shape and each supporting magnets of respective polarity. In another embodiment, the target and magnetron are divided into respective strips separated by other structure. Each magnetron strip is supported partially from above from a common scanning plate and partially on a respective target strip. A centering mechanism may align the different magnetron strips.
    Type: Application
    Filed: November 17, 2006
    Publication date: July 5, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Makoto Inagawa, Akihiro Hosokawa, Hien-Minh Le, Ilya Lavitsky, John White, Todd Martin, Bradley Stimson
  • Publication number: 20070153868
    Abstract: A semiconductor laser having an optical volume of between about 0.1×?3 to about 30×?3, where ? is the wavelength of light emitted by the semiconductor laser. The semiconductor laser comprises an optical cavity having a proximal and distal end; a first reflector disposed at the proximal end; a second reflector disposed at the distal end, said optical cavity being defined by the first and second reflectors; an active region disposed transversely with respect to the optical cavity, wherein the semiconductor laser produces an axial emission of light from the distal end of the optical cavity.
    Type: Application
    Filed: November 14, 2006
    Publication date: July 5, 2007
    Applicant: Applied Materials, Inc. Legal Department
    Inventors: Lawrence West, Gregory Wojcik
  • Patent number: 7238552
    Abstract: A method and system to form a refractory metal layer over a substrate includes introduction of a reductant, such as PH3 or B2H6, followed by introduction of a tungsten containing compound, such as WF6, to form a tungsten layer. It is believed that the reductant reduces the fluorine content of the tungsten layer while improving the step coverage and resistivity of the tungsten layer. It is believed that the improved characteristics of the tungsten film are attributable to the chemical affinity between the reductants and the tungsten containing compound. The chemical affinity provides better surface mobility of the adsorbed chemical species and better reduction of WF6 at the nucleation stage of the tungsten layer. The method can further include sequentially introducing a reductant, such as PH3 or B2H6, and a tungsten containing compound to deposit a tungsten layer. The formed tungsten layer can be used as a nucleation layer followed by bulk deposition of a tungsten layer utilizing standard CVD techniques.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: July 3, 2007
    Assignee: Applied Materials, Inc.
    Inventor: Jeong Soo Byun
  • Patent number: 7238090
    Abstract: Methods and apparatus for chemical mechanical polishing are described. In one embodiment, an apparatus includes a table top and a transfer station and multiple polishing stations are mounted on the table top. The apparatus further includes multiple washing stations, where each washing station is located between either two polishing stations or between a polishing station and a transfer station. Multiple carrier heads are supported by a support member that is rotatable about an axis. The transfer station and the multiple polishing stations are arranged at approximately equal angular intervals about the axis.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: July 3, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Robert D. Tolles, Norm Shendon, Sasson Somekh, Ilya Perlov, Eugene Gantvarg, Harry Q. Lee
  • Patent number: 7239389
    Abstract: Apparatus for inspection of a surface, including irradiating optics which are adapted to irradiate the surface with an irradiating beam having an adjustable polarization. The apparatus further includes at least one detector, each detector being associated with a respective analyzer having an orientation and adapted to generate signals in response to light received via the analyzer from an irradiated area on the surface, one of the at least one detector being adapted to receive scattered light from the irradiated area. The apparatus also includes a controller which is adapted to direct the irradiating optics to irradiate the irradiated area and which, in response to calibration signals generated thereby at the at least one detector, is adapted to set the adjustable polarization and the orientation of the respective analyzer of each detector.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: July 3, 2007
    Assignee: Applied Materials, Israel, Ltd.
    Inventors: Adam Baer, Ditza Auerbach
  • Patent number: 7235492
    Abstract: In one embodiment of the invention, a method for finishing or treating a silicon-containing surface is provided which includes removing contaminants and/or smoothing the surface contained on the surface by a slow etch process (e.g., about <100 ?/min). The silicon-containing surface is exposed to an etching gas that contains an etchant, a silicon source and a carrier gas. Preferably, the etchant is chlorine gas so that a relatively low temperature (e.g., <800° C.) is used during etching or smoothing processes. In another embodiment of the invention, a method for etching a silicon-containing surface during a fast etch process (e.g., about >100 ?/min) is provided which includes removing silicon-containing material to form a recess in a source/drain (S/D) area on the substrate. The silicon-containing surface is exposed to an etching gas that contains an etchant, preferably chlorine, a carrier gas and an optional silicon source.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: June 26, 2007
    Assignee: Applied Materials, Inc.
    Inventor: Arkadii V. Samoilov
  • Patent number: 7235794
    Abstract: An apparatus and method for scanning a pattern. The method includes: (i) directing a charged particle beam such as to interact with the pattern along a first scan path, and (ii) directing a beam such as to interact with the pattern along a second scan path. The pattern changes one of its characteristics as a result of an interaction with the beam. The distance between the first and the second scan paths may be bigger than the diameter of the charged electron beam. Each of the first and second scan paths may include a plurality of consecutive samples and the distance between the first and second scan paths may be bigger than a distance between adjacent samples. The location of scan paths may be changed between measurements and especially between measurement sessions. The charged particle beam may have an ellipsoid cross section.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: June 26, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Benzion Sender, Ophir Dror, Guy Eytan
  • Patent number: 7234584
    Abstract: In a semiconductor fabrication facility, a conveyor transports substrate carriers. The substrate carriers are unloaded from the conveyor and loaded onto the conveyor without stopping the conveyor. A load and/or unload mechanism lifts the substrate carriers from the conveyor during unloading operations, while matching the horizontal speed of the conveyor. Similarly, during loading operations, the load/unload mechanism lowers a substrate carrier into engagement with the conveyor while matching the horizontal speed of the conveyor. Individual substrates, without carriers, may be similarly loaded and/or unloaded from a conveyor.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: June 26, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Michael Robert Rice, Robert B. Lowrance, Martin R. Elliott, Jeffrey C. Hudgens, Eric A. Englhardt
  • Patent number: 7235486
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to a first reducing gas and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method may further provide exposing the substrate to a deposition gas comprising a second reducing gas and the tungsten precursor gas to form a tungsten bulk layer on the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples include that the ALD and CVD processes are conducted in the same deposition chamber or in different deposition chambers.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: June 26, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Moris Kori, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung, Ashok Sinha, Ming Xi
  • Patent number: 7235795
    Abstract: A particle monitor in the process chamber of a semiconductor device manufacturing apparatus provides a measure of a flux of contaminant particles in the chamber. The flux is measured whilst process conditions are produced in the process chamber and a process parameter is adjusted in response to the measured flux in order to reduce this flux during the process. In an ion implanter, the particle sensor measures the flux of particles entrained with the ion beam at a location in front of the wafer being processed.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: June 26, 2007
    Assignee: Applied Materials, Inc.
    Inventor: Jonathon Yancey Simmons
  • Patent number: 7235797
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: June 26, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Adrian Murrell, Bernard Harrison, Peter Edwards, Peter Kindersley, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Patent number: 7235479
    Abstract: A method of fabricating a semiconductor device. The method comprises creating a via in a dielectric layer that is formed on a substrate, filling the via, and optionally, the surface of the dielectric layer with a sacrificial material, patterning a first photoresist layer on the sacrificial material to define a trench for the semiconductor device, removing the first photoresist layer without affecting the sacrificial material, repatterning a second photoresist layer on the sacrificial material to define the trench for the semiconductor device, forming the trench, and removing the second photoresist layer and the sacrificial material completely after the trench is formed.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: June 26, 2007
    Assignee: Applied Materials, Inc.
    Inventor: Steven Verhaverbeke
  • Patent number: 7234908
    Abstract: A cassette stocker includes a plurality of cassette storage shelves positioned adjacent a cleanroom wall and vertically disposed relative to a plurality of cassette docking stations, and a cassette mover to carry a cassette between the shelves and the docking stations. An interstation transfer apparatus includes a support beam and a transfer arm adapted to carry a cassette between processing stations.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: June 26, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Jaim Nulman, Nissim Sidi
  • Publication number: 20070141856
    Abstract: In a first aspect, a first method is provided. The first method includes the steps of (1) preconditioning a process chamber with an aggressive plasma; (2) loading a substrate into the process chamber; and (3) performing plasma nitridation on the substrate within the process chamber. The process chamber is preconditioned using a plasma power that is at least 150% higher than a plasma power used during plasma nitridation of the substrate. Numerous other aspects are provided.
    Type: Application
    Filed: July 25, 2006
    Publication date: June 21, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Tatsuya Sato, Patricia Liu, Fanos Christodoulou
  • Patent number: 7232759
    Abstract: Embodiments of the current invention describe ammonia hydroxide treatments for surfaces. In one embodiment, a method and a cleaning solution including ammonium hydroxide (NH4OH), water (H2O), a chelating agent, and a surfactant for cleaning silicon germanium substrates are described. The cleaning solution does not include hydrogen peroxide (H2O2) because hydrogen peroxide etches germanium. In another embodiment, a method of terminating oxidized surfaces on semiconductor substrates with terminating groups that promote the bonding of the oxidized surface to another surface with a surface treatment containing ammonium hydroxide (NH4OH) is described. The oxidized surface is immediately bonded to a second substrate after evaporation of the surface treatment.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: June 19, 2007
    Assignee: Applied Materials, Inc.
    Inventor: Steven Verhaverbeke
  • Patent number: 7233008
    Abstract: A inspection system includes: a lens arrangement adapted to generate a substantially symmetrical electrostatic field about an optical axis and to direct a primary electron beam towards an object that is oriented in relation to the optical axis at a non-normal angle; and at least on additional electrode, positioned outside the lens arrangement such as to increase symmetry of an electromagnetic field in the vicinity of an interaction point between the primary electron beam and the object.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: June 19, 2007
    Assignee: Applied Materials, Israel, Ltd.
    Inventors: Igor Petrov, Dror Shemesh
  • Patent number: 7232514
    Abstract: Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a composition includes an acid based electrolyte system, one or more chelating agents, one or more corrosion inhibitors, one or more inorganic or organic acid salts, one or more pH adjusting agents to provide a pH between about 2 and about 10, a polishing enhancing material selected from the group of abrasive particles, one or more oxidizers, and combinations thereof, and a solvent. The composition may be used in an conductive material removal process including disposing a substrate having a conductive material layer formed thereon in a process apparatus comprising an electrode, providing the composition between the electrode and substrate, applying a bias between the electrode and the substrate, and removing conductive material from the conductive material layer.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: June 19, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Stan D. Tsai, Yongqi Hu, Siew S. Neo, Yan Wang, Alain Duboust, Liang-Yuh Chen
  • Patent number: 7232761
    Abstract: Method and apparatus are provided for polishing conductive materials with low dishing of features and reduced or minimal remaining residues. In one aspect, a method is provided for processing a substrate by polishing the substrate to remove bulk conductive material and polishing the substrate by a ratio of carrier head rotational speed to platen rotational speed of between about 2:1 and about 3:1 to remove residual conductive material. In another aspect, a method is provided for processing a substrate including polishing the substrate at a first relative linear velocity between about 600 mm/second and about 1900 mm/second at the center of the substrate, and polishing the substrate at a second relative linear velocity between about 100 mm/second and about 550 mm/second at the center of the substrate.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: June 19, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Shijian Li, Jui-Lung Li, Shi-Ping Wang, Gary Lam, David Mai, Fred C. Redeker
  • Patent number: 7232363
    Abstract: A substrate polishing apparatus and method are described. A base includes at least one movable platen to engage a polishing pad. At least one carrier head assembly presses a substrate against the polishing pad substantially within a polishing area during a polishing operation. A polishing solution dispenser applies a polishing solution to the polishing pad substantially within the polishing area during the polishing operation. A polishing solution retaining mechanism is attached to one of the base or the carrier head assembly. The retaining mechanism engages a top surface of the polishing pad and retains the polishing solution substantially within the polishing area during the polishing operation. Some implementations may reduce polishing solution consumption and allow for increased angular velocity.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: June 19, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Hanzhong Zhang, Feng Liu, Stan Tsai, Rashid Mavliev, Donald Olgado, Liang-Yuh Chen