Patents Assigned to Applied Materials, Inc.
  • Patent number: 11946134
    Abstract: Methods of depositing a nanocrystalline diamond film are described. The method may be used in the manufacture of integrated circuits. Methods include treating a substrate with a mild plasma to form a treated substrate surface, incubating the treated substrate with a carbon-rich weak plasma to nucleate diamond particles on the treated substrate surface, followed by treating the substrate with a strong plasma to form a nanocrystalline diamond film.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sze Chieh Tan, Vicknesh Sahmuganathan, Eswaranand Venkatasubramanian, Abhijit Basu Mallick, John Sudijono
  • Patent number: 11946686
    Abstract: A fluid delivery device is disclosed. The fluid delivery device includes a fluid flow meter. The fluid flow meter is enclosed in an insulated box. An intake is provided on the insulated box for providing a forced cooling gas flow over the fluid flow meter. An exhaust is provided on the insulated box from which the forced cooling gas exits the insulated box.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Shailendra Srivastava, Syed Alam, Nikhil Sudhindrarao Jorapur, Daemian Raj Benjamin Raj, Juan Carlos Rocha-Alvarez
  • Patent number: 11946135
    Abstract: Processing methods for forming iridium-containing films at low temperatures are described. The methods comprise exposing a substrate to iridium hexafluoride and a reactant to form iridium metal or iridium silicide films. Methods for enhancing selectivity and tuning the silicon content of some films are also described.
    Type: Grant
    Filed: March 27, 2023
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Hua Chung, Schubert Chu, Mei Chang, Jeffrey W. Anthis, David Thompson
  • Patent number: 11944988
    Abstract: Embodiments of multi-zone showerheads are provided herein. In some embodiments, a multi-zone showerhead includes: a body having an outer surface and including a plurality of fluidly independent plenums; and a plurality of gas distribution plugs extending through the body, wherein at least one gas distribution plug includes a first internal gas passageway coupling a first plenum of the plurality of fluidly independent plenums to the outer surface and a second internal gas passageway coupling a second plenum of the plurality of fluidly independent plenums to the outer surface. In some embodiments, the body can include: a top plate; a bottom plate; and one or more intermediate plates disposed between the top plate and the bottom plate, wherein individual plenums of the plurality of fluidly independent plenums are respectively defined between adjacent plates of the top plate, the bottom plate, and the one or more intermediate plates.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: April 2, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhannad Mustafa, Muhammad Rasheed
  • Patent number: 11946140
    Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a first lid plate seated on the chamber body. The first lid plate may define a plurality of apertures through the first lid plate. The systems may include a plurality of lid stacks equal to a number of the plurality of apertures. The systems may define a plurality of isolators. An isolator may be positioned between each lid stack and a corresponding aperture of the plurality of apertures. The systems may include a plurality of annular spacers. An annular spacer of the plurality of annular spacers may be positioned between each isolator and a corresponding lid stack of the plurality of lids stacks. The systems may include a plurality of manifolds. A manifold may be seated within an interior of each annular spacer of the plurality of annular spacers.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Anantha K. Subramani, Seyyed Abdolreza Fazeli, Yang Guo, Ramcharan Sundar, Arun Kumar Kotrappa, Steven Mosbrucker, Steven D. Marcus, Xinhai Han, Kesong Hu, Tianyang Li, Philip A. Kraus
  • Patent number: 11945073
    Abstract: A carrier head for chemical mechanical polishing includes a base assembly and a membrane assembly connected to the base assembly. The membrane assembly includes a membrane support, an inner membrane secured to the membrane support, wherein the inner membrane forms a plurality of individually pressurizable inner chambers between an upper surface of the membrane and the membrane support, and an outer membrane secured to the membrane support and extending below the inner membrane, the outer membrane having an inner surface and an outer surface, wherein the outer membrane defines a lower pressurizable chamber between the inner surface of the outer membrane and a lower surface of the inner membrane, wherein the inner surface is positioned for contact by a lower surface of the inner membrane upon pressurization of one or more of the plurality of chambers, and wherein the outer surface is configured to contact a substrate.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Steven M. Zuniga, Jay Gurusamy, Andrew J. Nagengast
  • Publication number: 20240102157
    Abstract: Embodiments of the disclosure are directed to methods of depositing a molybdenum film directly on a substrate surface (e.g., a low-K dielectric material) by exposing the substrate surface to a molybdenum-containing precursor and a plasma at a temperature of less than or equal to 400° C. The molybdenum-containing precursor comprises one or more of molybdenum pentachloride (MoCl5), molybdenum dioxide dichloride (MoO2Cl2), molybdenum oxytetrachloride (MoOCl4), molybdenum hexacarbonyl, bis(tert-butylimido)-bis(dimethylamido)molybdenum, or bis(ethylbenzene) molybdenum. The plasma comprises one or more of hydrogen (H2), nitrogen (N2), or a silane (SixHy). In some embodiments, when the molybdenum-containing precursor comprises molybdenum hexafluoride (MoF6), the plasma does not include hydrogen (H2).
    Type: Application
    Filed: September 22, 2022
    Publication date: March 28, 2024
    Applicant: Applied Materials, Inc.
    Inventors: TUERXUN AILIHUMAER, Srinivas Gandikota, Yixiong Yang, Yogesh Sharma, Ashutosh Agarwal, Mandyam Sriram
  • Publication number: 20240105499
    Abstract: Embodiments of the present technology relate to semiconductor processing methods that include providing a structured semiconductor substrate including a trench having a bottom surface and top surfaces. The methods further include depositing a portion of a silicon-containing material on the bottom surface of the trench for at least one deposition cycle, where each deposition cycle includes: depositing the portion of the silicon-containing material on the bottom surface and top surfaces of the trench, depositing a carbon-containing mask layer on the silicon-containing material on the bottom surface of the trench, where the carbon-containing mask layer is not formed on the top surfaces of the trench, removing the portion of the silicon-containing material from the top surfaces of the trench, and removing the carbon-containing mask layer from the silicon-containing material on the bottom surface of the trench, where the as-deposited silicon-containing material remains on the bottom surface of the trench.
    Type: Application
    Filed: September 28, 2022
    Publication date: March 28, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Zeqing Shen, Susmit Singha Roy, Abhijit Basu Mallick, Xinke Wang, Xiang Ji, Praket Prakash Jha
  • Patent number: 11940724
    Abstract: Provided herein are apparatus, systems and methods for processing reticle blanks. A reticle processing system includes a support assembly having a plate coupled to a frame, and a carrier base assembly supported on the support assembly. The carrier base assembly comprises a wall extending from a top surface of the carrier base and defining a containment region for a reticle.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sanjay Bhat, Vibhu Jindal
  • Patent number: 11940683
    Abstract: Embodiments described and discussed herein generally relate to flexible or foldable display devices, and more specifically to flexible cover lens assemblies. In one or more embodiments, a flexible cover lens assembly contains a substrate, an anti-fingerprint coating layer, and an adhesion promotion layer disposed between the substrate and the anti-fingerprint coating layer.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: March 26, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Manivannan Thothadri, Harvey You, Helinda Nominanda, Neil Morrison, Daniel Paul Forster, Arvinder Chadha
  • Patent number: 11939668
    Abstract: A method of forming a tungsten-containing layer over a substrate includes a) positioning a substrate on a substrate support in a process volume of a process chamber; b) providing a precursor gas to the process volume of the process chamber for a first duration; and c) providing a tungsten-containing gas to the process volume of the process chamber by opening a pulsing valve on a tungsten-containing gas delivery line for a second duration occurring after the first duration to form a tungsten-containing layer on the substrate. The tungsten-containing gas delivery line includes a first section connected to an inlet of the pulsing valve and a second section connected to an outlet of the pulsing valve, the first section connects the inlet of the pulsing valve to a reservoir of tungsten-containing gas, the second section connects the outlet of the pulsing valve to an inlet of the process chamber.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Zubin Huang, Mohammed Jaheer Sherfudeen, David Matthew Santi, Jallepally Ravi, Peiqi Wang, Kai Wu
  • Patent number: 11940819
    Abstract: Embodiments of fast gas exchange (FGE) manifolds are provided herein. In some embodiments, a FGE manifold includes: a manifold housing having a plurality of inlets and a plurality of outlets for flowing a plurality of process gases therethrough, wherein the plurality of outlets correspond with a plurality of zones in the process chamber; a plurality of hybrid valves disposed in the manifold housing and fluidly coupled to the plurality of inlets; a plurality of mass flow controllers disposed in the manifold housing downstream of the plurality of hybrid valves; a plurality of mixing lines extending downstream from the plurality of mass flow controllers to a plurality of outlet lines; and a plurality of outlet valves disposed in line with corresponding ones of the plurality of outlet lines, wherein a flow path is defined between each inlet of the plurality of inlets and each outlet of the plurality of outlets.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: March 26, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Abhishek Chowdhury, Ravikumar Patil, Arun Chakravarthy Chakravarthy, Jon Christian Farr, Saravanan Chandrabalu, Prabhuraj Kuberan
  • Patent number: 11940682
    Abstract: Embodiments described and discussed herein generally relate to flexible or foldable display devices, and more specifically to flexible cover lens assemblies. In one or more embodiments, a flexible cover lens assembly contains a glass layer, an adhesion promotion layer on the glass layer, an anti-reflectance layer disposed on the adhesion promotion layer, a dry hardcoat layer having a nano-indentation hardness in a range from about 1 GPa to about 5 GPa and disposed on the anti-reflectance layer, and an anti-fingerprint coating layer disposed on the dry hardcoat layer.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: March 26, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Manivannan Thothadri, Harvey You, Helinda Nominanda, Neil Morrison, Daniel Paul Forster, Arvinder Chadha
  • Patent number: 11942576
    Abstract: A photocurable composition includes a blue photoluminescent material, one or more monomers, and a photoinitiator that initiates polymerization of the one or more monomers in response to absorption of the ultraviolet light. The blue photoluminescent material is selected to absorb ultraviolet light with a maximum wavelength in a range of about 300 nm to about 430 nm and to emit blue light. The blue photoluminescent material also has an emission peak in a range of about 420 nm to about 480 nm. The full width at half maximum of the emission peak is less than 100 nm, and the photoluminescence quantum yield is in a range of 5% to 100%.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Lisong Xu, Sivapackia Ganapathiappan, Hou T. Ng, Byung Sung Kwak, Mingwei Zhu, Nag B. Patibandla
  • Patent number: 11939674
    Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the boron-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the silicon-containing precursor or the boron-containing precursor is greater than or about 1:1. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber.
    Type: Grant
    Filed: March 2, 2023
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yi Yang, Krishna Nittala, Karthik Janakiraman, Aykut Aydin, Diwakar Kedlaya
  • Patent number: 11939675
    Abstract: In one aspect, an apparatus includes a chamber body, a blocker plate for delivering process gases into a gas mixing volume, and a face plate having holes through which the mixed gas is distributed to a substrate. In another aspect, the face plate may include a first region with a recess relative to a second region. In another aspect, the blocker plate may include a plurality of regions, each region having different hole patterns/geometries and/or flow profiles. In another aspect, the apparatus may include a radiation shield disposed below a bottom of the substrate support. A shaft or stem of the substrate support includes holes at an upper end thereof near the substrate support.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Rui Cheng, Karthik Janakiraman, Zubin Huang
  • Patent number: 11942361
    Abstract: Disclosed are approaches for forming semiconductor device cavities using directional dielectric deposition. One method may include providing a plurality of semiconductor structures and a plurality of trenches of a semiconductor device, and forming a dielectric atop the plurality of semiconductor structures by delivering a dielectric material at a non-zero angle of inclination relative to a normal extending perpendicular from a top surface of the plurality of semiconductor structures. The dielectric may be further formed by delivering the dielectric material at a second non-zero angle of inclination relative to the normal extending perpendicular from the top surface of the plurality of semiconductor structures.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Armin Saeedi Vahdat, Tristan Y. Ma, Johannes M. van Meer, John Hautala, Naushad K. Variam
  • Patent number: 11942324
    Abstract: A method of promoting adhesion between a dielectric layer of a semiconductor device and a metal fill deposited within a trench in the dielectric layer, including performing an ion implantation process wherein an ion beam formed of an ionized dopant species is directed into the trench at an acute angle relative to a top surface of the dielectric layer to form an implantation layer in a sidewall of the trench, and depositing a metal fill in the trench atop an underlying bottom metal layer, wherein the metal fill adheres to the sidewall.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Qintao Zhang, Jun-Feng Lu, Ting Cai, Ma Ning, Weiye He, Jian Kang
  • Patent number: 11939666
    Abstract: Methods and apparatus for processing a substrate include cleaning and self-assembly monolayer (SAM) formation for subsequent reverse selective atomic layer deposition. An apparatus may include a process chamber with a processing volume and a substrate support including a pedestal, a remote plasma source fluidly coupled to the process chamber and configured to produce radicals or ionized gas mixture with radicals that flow into the processing volume to remove residue or oxides from a surface of the substrate, a first gas delivery system with a first ampoule configured to provide at least one first chemical into the processing volume to produce a SAM on the surface of the substrate, a heating system located in the pedestal and configured to heat a substrate by flowing gas on a backside of the substrate, and a vacuum system fluidly coupled to the process chamber and configured to control heating of the substrate.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: March 26, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiangjin Xie, Carmen Leal Cervantes, Feng Chen, Lu Chen, Wenjing Xu, Aravind Kamath, Cheng-Hsiung Matthew Tsai, Tae Hong Ha, Alexander Jansen, Xianmin Tang
  • Patent number: 11942332
    Abstract: A method of removing a metal-containing layer (e.g., tungsten) from a substrate is provided. The method includes generating a first plasma in a process volume of a plasma chamber when a patterned device is disposed on a substrate support in the process volume. The patterned device includes a patterned region and an unpatterned region; a substrate; a tungsten-containing layer formed over the substrate; a supporting layer disposed between the tungsten-containing layer and the substrate. The patterned region includes exposed surfaces of the supporting layer and the unpatterned region does not include any exposed surfaces of the supporting layer. The method further includes depositing a first film over the patterned region of the tungsten-containing layer with the first plasma; and removing portions of the unpatterned region of the tungsten-containing layer with the first plasma without depositing the first film over the unpatterned region.
    Type: Grant
    Filed: August 12, 2022
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Akhil Mehrotra, Gene S. Lee, Abhijit Patil, Shan Jiang, Zohreh Hesabi